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INTRODUCTION 

One of the primary functions of the sanitary engineering profession 

Is to provide society with safe, aesthetically pleasing drinking 

water. Surface water, which Is the predominant source of drinking 

water In many areas, Is usually contaminated with particulates. This 

Is of Interest to the sanitary engineer, because as Lawler et al. 

(1980) states, 

"Host pollutants of concern to human health and environmental 
quality are solid particles or are associated with solid 
particles." 

The size of these particles range from less than 0.1 /im to greater 

.than 100 (m, however, because of the selection processes at work in a 

natural water, the majority of the particles are in the 1 fim range. 

This causes problems because the two unit processes traditionally 

used to remove particulates from drinking water, sedimentation and 

filtration, are both least effective at removing particles 

approximately 1 urn in diameter. The particles much smaller than 1 fm 

will be transported to the filter media for removal by Brownian 

transport. Particles larger than 1 ftm will be transported to the 

filter media or to the bottom of a tank by gravity and/or inertial 

forces. The 1 nm particles, however, fall into a window where 

neither of these mechanisms is effective for particle transport. 

This is illustrated graphically by Figure 1 (Yao et al., 1971). To 

remove these particles effectively, it is necessary to grow them from 

individual particles to larger aggregates. The exact aggregate 
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EXPERIMENTAL DATA 

THEORETICAL 
MODEL 

d a0.397inn\ 
T \ 
t • 0.38 \ 
L« 9.5 in. 

Vo*2opm/<q.ft.  

as i(aiiumid) 

SIZE OF SUSPENDED PARTICLES (microns) 

Figure 1. Comparison of theoretical model and experimental data 
for removal of colloids in a granular media filter 
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size desired will depend on the process to be used In removing the 

solids. Treweek (1979) noted that all particles larger than 10 pm 

were removed by a deep bed sand filter. Obviously if the solids are 

to be removed in a sedimentation tank a larger size will be optimal. 

Coagulation/flocculation is the process traditionally used to 

aggregate the small particles, and move them from the small size 

range to a size range which is amenable to removal by sedimentation 

and filtration. Coagulation is the chemical destabilizatlon of the 

particulates, i.e., primary particles, so they will aggregate. 

Flocculation is the formation of the aggregates, i.e., floe, by fluid 

transport of the particles to cause collision and growth. 

A large body of research exists on coagulation/flocculation at 20 "C, 

and the industry has a fairly good working understanding of the 

process at warm temperature. Contrasted to this, there has been very 

little work done at low temperatures, i.e., less than 10 "G, and 

ironically the little work that has been performed frequently appears 

contradictory (Morris and Knocke, 1984; Camp et al. 1940). 

It is a little surprising that so little work has been done at low 

temperature when one considers the amount of time each year that 

temperate zone surface waters are cold. The water temperature in a 

lake or reservoir can easily drop to 1 *C, and it is possible, in the 

north, to see 5 *C water temperatures for 5 or 6 months of the year 
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(Wetzel, 1975). The temperatures in a river will actually drop to 0 

"C before Ice cover (Hynes, 1970). Hutchinson (1974) reports that 

Lake Huron has 3.3 'C water 3 months of the year, and that these low 

temperatures are occasionally accompanied by high turbidities. 

In light of the long time periods over which we must treat cold 

waters, and the fact that low temperature waters are capable of 

carrying more particulate matter than warm waters (Hynes, 1974), It 

is Important to Improve our understanding of the flocculatlon process 

at low temperatures. It is hoped that this work will help to clarify 

some of the questions which currently exist. 
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OBJECTIVES 

It Is the objective of this study to experimentally Investigate the 

effect of low temperature on flocculatlon In a turbulent flow field, 

and to establish a global view of the potential temperature effects. 

This was accomplished by first thoroughly reviewing the literature, 

and then performing a multiple temperature study in the laboratory. 

To do the experimental study in the laboratory, it is necessary to 

first select a water/particle system which: 

o mimics the systems encountered in full scale water 
treatment, as far as is practical, 

o is tightly controlled enough to be considered a constant in 
the experimental work. 

Using the selected particle/water system the following points are 

addressed; 

o What turbulence intensity parameter best predicts the 
impact of the turbulent mixing regime on the 
flocculatlon process. Determine if maintaining a 
constant root mean square velocity gradient (G), energy 
input per unit mass (e), or Kolmogorov microscale (17), 
will maintain the same level of treatment in the 
flocculatlon process at both high and low temperature. 

o What impact does changing the reactor geometry have on the 
flocculatlon process? It is well known that changing the 
reactor geometry will change the distribution of production 
scale turbulent eddies, and the isotropic-homogeneous 
characteristics of the turbulent flow field. Changing the 
reactor geometry and the temperature may provide insight 
into the actual mechanism of particle transport. 



www.manaraa.com

6 

o What parameter best predicts the Impact of the system 
chemistry on the flocculatlon process. It Is well 
established that system pH Is the primary process control 
parameter for coagulation with metal salts. However, the 
metal salt precipitates Involve hydroxides. Therefore, it 
is of interest to determine whether maintaining a constant 
pH or a constant pOH will better optimize the flocculatlon 
process when changing from high to low temperature. 

This study made no attempt to address: 

o The sweep floe mechanism and the effect of temperature on 
sweep floe. Only the adsorption/destabllizatlon mechanism 
is considered. 

o All of the work has been performed in the batch mode 
(comparable to plug flow), and the effects of temperature 
on flocculatlon in the continuous flow mode hâve not been 
addressed. 

o The mechanism by which the metal salts adsorb to the 
particle and destabilize it, is not considered. 

o The measurement of the turbulent flow field characteristics 
in the flocculatlon vessel was not performed as part of 
this study. This information was taken from the 
literature. 
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LITERATURE REVIEW 

Introduction 

It is hoped that the introduction will give the reader an overview of 

flocculation, and, in so doing, put the rest of the literature review 

into context. If the reader is familiar with the 

coagulation/flocculation process it is suggested that the reader go 

directly to the next section of the literature review. 

First let's develop a mental picture of the flocculation process. We 

start with a suspension, in this case 25 mg/1 kaollnite, of small 

particles, i.e., 0.1 to 10 fxm, which are distributed in the reactor 

homogeneously and isotopically. These small particles are stable in 

a colloidal sense, that is given a very long time they would not 

aggregate into larger particles. In general, this particle stability 

in a natural system is due to electrostatic repulsion induced by a 

negative charge on the particles. Note that, in this review of the 

literature the term "electrostatic repulsion" is used interchangeably 

with the term "double layer interaction". 

The purpose of coagulation/flocculation is to destabilize these 

stable particles, and then cause the individual (primary) particles 

to stick together and form aggregates (floe). The primary particles 

are destabilized by adding a small amount of positively charged 

material to the suspension. This material, called the primary 
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coagulant, eliminates nearly all of the electrostatic repulsion 

between the particles by adsorbing onto the surface of the particles. 

To prevent an uneven distribution of the coagulant in the suspension, 

it is necessary to intensely mi% the suspension as the coagulant is 

added. This is referred to as rapid mixing. 

Once the electrostatic repulsion has been neutralized, van der Waals 

attraction can act to stick the particles together. However, for van 

der Waals attraction to operate it is necessary for the particles to 

come close together. In turbulent flocculation it is the turbulent 

flow field which moves the particles, and brings them close to each 

other, so that they can collide and stick to each other. If the 

particles are larger than the Kolmogorov microscale, they are moved, 

relative to each other,by turbulent eddies. Particles being moved by 

the turbulent eddies are only moved effectively by eddies which are 

approximately the same size as the particles. If the particles are 

smaller than the microscale, they are moved relative to each other by 

localized shear flows, which are induced by the stretching of the 

eddies in energy transfer. 

Energy is put into the reactor by a paddle which creates large eddies 

or production scale eddies (2+ cm). This energy is transferred or 

cascaded down to the smaller eddies through a process called vortex 

stretching. Practically this is important because the energy is 

introduced into the system in a region where the flow field is 
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Inertia controlled, and very little energy dissipation occurs. The 

energy must get from this large length scale region, down to a small 

length scale region. The Kolmogorov mlcroscale, which represents the 

point at which viscous dissipation dominates the flow field, is at 

about 200 nm in this system. The primary particles are about 2 pm. 

If the mixing energy is very low, much of the energy will be 

dissipated as heat before it is transferred down to a size where it 

can effectively move the primary particles. As the energy into the 

reactor is increased the amount of energy in the small eddy size is 

increased. This, however, is a two-edged sword. As the energy which 

drives the flocculation is increased, the energy available for floe 

breakup due to shear stress is also increased. 

The system under investigation is quite complex. It is necessary to 

understand the colloid chemistry and the fluid dynamics of the system 

if we are to interpret the temperature effect data intelligently. It 

is hoped that by reviewing the basic literature it will be possible 

to gain some insist into this specialized, applied problem. 

Recall that the objective of this research is to establish a global 

view of flocculation in a turbulent flow field with regard to 

potential temperature effects. It is suggested that temperature 

changes, from 20 "C to near freezing, could affect the flocculation 

process in the following areas: 
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o abrupt changes in the physical chemistry In water as 
the solid/liquid phase boundary Is approached, 

o changes In the surface chemistry of clay, 

o changes in the Derjaguin, Landau, Verwey, and 
Overbeek (OLVO) forces which may effect particle-
particle Interactions, 

o changes in the structure of the turbulent flow field 
due to viscosity changes, 

o changes in the chemistry of the system, both the 
water and the coagulant. 

The literature concerning each of these five areas will be discussed. 

In addition the literature on particle counting, as it relates to 

monitoring the flocculation process, and the literature on modeling 

of the flocculation process will be reviewed. 

Particle Suspension 

The particle suspension used in this study consists of kaollnlte clay 

in water. Dispersions of clay in water are classified as lyophoblc 

colloidal systems (van Olphen, 1987). A lyophoblc colloid is one 

which does not readily hydrogen bond with water. In this section we 

will discuss the nature of the suspension, and how temperature 

effects the solvent and the clay. 

Fluid Phase - Water 

During the phase change from water to ice, there is a change in the 

nature of water. Morris and Knocke (1984) noted, in a case study of 

flocculation with alum, that flocculation efficiency dropped off 
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radically at temperatures less than 4.5*0. This would make one 

wonder If, perhaps, the properties of liquid water undergo some 

unusual changes as the system approaches the water/ice phase change. 

The coagulation-flocculation process, in a municipal setting, may be 

carried out right at 0"C, or even below. If one is to fully 

understand this work, and extrapolate the results of this work down 

to the practical limits of practice, it is necessary to understand 

the behavior of water near the solid/liquid phase transition 

boundary. 

There is one main point the writer hopes to establish in this 

section. As long as water does not freeze, it's various properties 

can be described by a smooth well behaved function of temperature. 

Thus, data collected at 20, 5, and 2 *C can be extrapolated to 1 "C, 

or even lower, if the physical properties of water are the only 

important system variables. 

The classical picture of the events preceding freezing are described 

by Davis and Day (1961) in the following manner. The density of 

water increases as the temperature drops, until 4 °C is reached. At 

this point the influence exerted by hydrogen bonding is stronger than 

the tendency to contract, and the water molecules begin to arrange 

themselves along the directional lines of the hydrogen bonds. Thus, 

the water expands and decreases in density until it reaches 0 "C. At 
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0 *C, it solidifies to Ice. Let's look at how these events effect 

the properties of the liquid. 

Wetzel (1975) notes that the unique properties of water depend upon 

the atomic structure, bonding, and association characteristics of the 

water molecules. It Is not possible to directly observe how these 

change as the water approaches freezing, so it is necessary to 

measure secondary parameters and draw conclusions from these. We 

will look at, among other things, nuclear magnetic relaxation (NMR), 

x-ray scattering, conductivity, and viscosity data. 

One thing which may change as the water approaches freezing is thg 

connectivity of the water molecules. This connectivity is due to the 

water hydrogen bonding with itself, and determines such properties as 

viscosity and di-pole relaxation frequency (Nimtz, 1986). The. di-

pole relaxation frequency is measured using NMR. The random motions 

of a proton in the vicinity of another proton produces a time-

dependent magnetic field through magnetic di-pole coupling (Franks, 

1972). Measuring the relaxation of the magnetic field provides 

information on rotational diffusion, translatlonal diffusion, and 

intermolecular exchange of the water molecules. Di-pole relaxation 

time and chemical potential values are both presented in graphical 

form by Nimtz (1986). These values, which extend into the super

cooled region, indicate a nice smooth change with no anomalies In the 

curve. 



www.manaraa.com

13 

X-ray Scattering experiments and studies of Infrared and Raman 

adsorption spectra, Indicate that there Is a considerable degree of 

short range order In water. These experiments also reveal the 

coordination characteristic of the tetrahedrally bonded structure In 

the liquid. X-ray scattering studies, reported by Kavanau (1964), 

Indicate that the average number of nearest-neighbors Is 4.4 to 4.6 

In liquid water. This coordination number Is 4 for Ice and 

approaches 5 as boiling Is approached (Franks, 1983). This Indicates 

that water Is a highly structured liquid over Its entire liquid 

phase, and the degree of order reduces slowly as the liquid Is heated 

toward boiling (Franks, 1983). The spectra from the x-ray scattering 

also Indicate that any given molecule can "see" order only as far as 

three molecular diameters. Beyond that the molecular arrangement 

becomes uniform and random with no preferential Intermolecular 

spacing. Thus one can see that, although water Is highly structured 

for a liquid, that structure Is local In nature. Turskl (1986) 

states that local orlentatlonal order exists In a liquid, and that 

order undergoes a change to long range orlentatlonal order only when 

the liquid freezes. The change from short range to long range order 

Is manifested In the volume change related to freezing. From Figure 

2 (Turskl, 1986), which shows a dlmenslonless order parameter plotted 

against temperature, we can see that the transition from short range 

order to long range order Is abrupt, and corresponds to freezing. 
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Freezing point 

Temperature 

Figure 2. Schematic showing the temperature dependence of the 
order parameter ^ 
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Rahman and Stllllnger (1971) reported monte carlo simulation results 

for water super-cooled to -8.3 "C., the liquid water showed no marked 

tendency to organize Into Ice nuclei. This Indicates that the 

Intrinsic structure of the water does not change until freezing 

occurs. Wetzel (1975) notes that liquid water at 0 "G experiences 

lO^l to 10^2 reorientation and translatlonal movements per second. 

Ice molecules at 0 *G experience only 10^ to 10^ reorientation and 

translatlonal movements per second. 

Franks (1972) reports that all of the major thermodynamic properties 

of water, Including molar volume, compressibility, and specific heat 

all change smoothly with temperature right up to the point at which 

water freezes. The transport properties of water, Including 

viscosity and thermal conductivity, also change smoothly up to the 

point of Ice formation. In the case of viscosity the relationship is 

well behaved to a super-cooled temperature of -20 "C. 

These computer simulations and laboratory measurements of fundamental 

properties of water reported In the literature make It obvious that 

no abrupt changes occur in the physical chemistry of water near the 

phase change prior to freezing. Thus, no abrupt changes in 

flocculatlon efficiency should occur at temperatures lower than 

4.5"C. 
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Solid Phase - Kaollnlte Clay 

The information presented here is intended as background, to assist 

in understanding how the particle system effects such things as 

interparticle forces, floe strength, particle counting, and 

coagulation/flocculation process in general. A number of particle 

systems were initially considered for the experimental study, 

including: 

o clay (kaolinite, Kentucky Ball Clay) 

o mono-dispersed iron particles (Matejevic et al. 1975; 
Hatejevic and Scheiner 1978) 

o mono-dispersed aluminum particles (Brace and Matejevic, 
1973) 

o mono-dispersed latex spheres. 

Of these the clay was selected because: 

It frequently represents a large fraction of the 
particulates present in the real system, and will thus make 
the experimental results more meaningful to the industry as 
a whole. 

It has frequently been used in past research reported in 
the literature. 

A clay was found which, for practical purposes, was mono-
dispersed. 

This clay was available in large quantities with consistent 
physical and chemical properties. 

Of the primary particle systems evaluated, only the clay will be 

discussed here. Two main points will be stressed; the fundamental 

properties of clay which will effect our understanding of the 
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flocculatlon results, and the properties of clay which might be 

temperature sensitive. The discussion will center around the 

physical and chemical characteristics of kaollnlte, and where 

practical It will be compared to montmorlllonlte and llllte. 

Clay minerals from the kaollnlte group are probably the most common 

clays (Deer et al. 1966). Of the clay minerals In the kaollnlte 

group, kaollnlte Is the most common member (Mitchell, 1976). Thus, 

It Is a material which Is representative of naturally occurring 

particulate contaminants. Kaollnlte Is referred to as a 1:1 mineral, 

because at a molecular level It consists of alternating sheets of 

molecules. One sheet has an octahedral structure, which consists of 

aluminum coordinated octahedrally with oxygen or hydroxide. The 

other sheet Is a silica sheet, which consists of silica coordinated 

tetrahedrally with oxygen. The bonding between the successive layers 

is by van der Waals attraction and hydrogen bonding. This bonding is 

of sufficient strength so that there is no interstitial swelling. 

The average molecular formula for kaollnlte is (OHOgSi^Al^Oig 

(Mitchell, 1976). 

It is fortunate that the chemical composition of kaollnlte is subject 

to very little variation (Deer et al. 1986), and the structural 

composition Is subject to very little variation (van Olphen, 1977). 

This means that the surface chemistry of kaollnlte is fairly 

consistent from sample to sample. 
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The kaollnlte particles possess a net negative charge which is 

probably the result of substitution (Mitchell, 1976). A number of 

studies reported by Bennett and Hulbert (1986) show that at near 

neutral pH, the faces of the kaollnlte have a negative charge, and 

the edges have a neutral charge. This is also supported by Lyklema 

(1987) and Sonntag and Russel (1986). Table 1, from Soimtag and 

Russel, demonstrates the pH dependence of the faces and edges. Note 

that at all pH values the edge charge is almost trivial in comparison 

to the face charge. 

Table 1. Electrokinetic potentials of the edges and faces of 
kaollnlte particles, as a function of pH and NaCl 
concentration (in moles/dm*) 

pH Electrokinetic potential in mV 

edge face 

10-4 10-1 10-4 10"! 

6 14 4 -54 -26 
7 4 1 -54 -26 
8 -14 -4 -54 -26 

The net charges on the faces of the clay may be accounted for by 

substitution of either Al^^ for Sl**^ in the silica sheet, or 

substitution of a divalent cation for Al*^ in the octahedral sheet. 

Replacement of only 1 in every 400 Si would account for the net 

negative charge in many kaollnlte clays (Mitchell, 1976). This 
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Indicates that a constant charge assumption may be appropriate for 

DLVO modeling of the Interpartlcle forces. 

Table 2 contains ranges of typical cation exchange capacity (CEC) 

and specific surface area (S) values for the most common clays. 

Table 2. Ranges of typical clay mineral characteristics 

Characteristic Kaolinlte Hontmorlllonlte Illlte 

CEC(meq/100 gm) 3-15 80-150 10-40 

S(m^/gm) 10-20 Primary 50-120 65-100 

Secondary 700-840 
(Interlayer) 

From the CEC and S, it is possible to estimate the surface charge 

density in the following manner: 

a - CEC/S 

The units on a are coulombs per meter squared. CEC , which is 

usually expressed in terms of meq per gram, represents exchangable 

cations per unit mass of suspended particles. The units meq per unit 

mass can be converted to coulombs per gram by multiplying by 96.5 

coulomb/meq (Newman, 1987). Both Newman (1987) and van Olphen (1977) 

note that the CEC of kaolinlte is low compared to the other clays, 

but the charge density Is comparable to the charge density of 

montmorillonite. This Is because the cations are exclusively located 

on the exterior surfaces of the kaolinlte, and the particles are 
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rather thick, yielding a small exterior surface. The charge is 

concentrated on the surface because the basal spacing of the 

kaolinite does not leave room for interlayer cations. This means 

that all of the charge compensating cations must adsorb to the 

exterior surface of the clay (van Olphen, 1977). Thus, from a DLVO 

perspective, the system geometry of kaolinite is as simple as it 

could possibly be for a clay. Table 3 uses average values from Table 

2 to estimate the surface charge density values for the clays. 

Table 3. Average surface characteristics for common clays 

Characteristic Kaolinite Montmorlllonlte Illlte 

CEC(C/gm) 8.69 110.98 24.13 

S(mVgn») 15 770 82.5 

aiC/mh 0.58 0.14 0.29 

Even though this table is based on the average of a range of values, 

it serves to Illustrate a point. The surface charge density of 

kaolinite is comparable to that of other naturally occurring clays, 

van Olphen (1977) states that most data for kaolinite calculate a 

charge density of 0.15 to 0.2 C/m^, which is very similar to the 

values reported for montmorlllonlte and lllits. 

The size and shape of the primary particles in a flocculating system 

is important because they effect: 
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o 

o 

o the fluid transport mechanism, 

the particle capture efficiency, 

the interparticle forces, and 

o our ability to measure the particles. 

Kaolinite is usually a well formed six-sided plate. The dimension of 

the plates may range from 0.1 to 4 /im, and the thickness may range 

from 0.05 to 2 fm (Mitchell, 1976). Newman (1987) Notes that 

kaolinite particles are fairly large often having 50 percent or more 

greater than 0.5 pm. 

Another area of interest is the Interaction of the clay water 

Interface. Kavanau (1964) states that colloids in general are 

encased in a thin crust of bound water at least one molecule thick. 

Newman (1987), writing specifically about kaolinite says, "studies on 

the structure and energy status of water adjacent to kaolinite 

surfaces seem to agree that the range of influence of the surface 

extends to between two and four water molecule layers." 

The temperature induced changes which might affect the behavior of 

the clay, would be system chemistry changes, which might alter the 

surface chemistry of the clay. As the pK^ of water changes, the 

surface ionlzable sites may also change, if the system pH is held 

constant. However, it has been shown that the zeta potential of 

kaolinite is only mildly sensitive to pH changes in the pH range of 5 
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to 8 (Hall, 1965; Hong-Xiao and Stumm, 1987a). Based on this weak 

dependence of surface chemistry, i.e., surface charge, on pH it is 

expected that the surface chemistry of the clay will not be greatly 

affected by the normal temperature changes. 

Zntermolecular and Surface Forces 

The tem hydrophobic is frequently applied to clays, and implies that 

clay materials do not like to disperse in water. It is perhaps more 

accurate to say that water likes itself too much to tolerate the 

clay. The surface of the clay is incapable of hydrogen bonding with 

the water. This disrupts the water "lattice", and leads to a 

thermodynamically unstable situation (Israelachvili, 1985). If it is 

thermodynamically unfavorable for the colloidal clay to remain 

dispersed, why doesn't it aggregate? Is there an energy barrier, and 

if so what is its source? Once the energy barrier is removed and the 

clay begins to aggregate, what forces hold the aggregates together? 

In this section we will discuss the fundamental colloidal forces 

needed to understand the flocculation process. In addition, we will 

discuss the effect of temperature on the magnitude of these forces. 

We will begin by discussing the following basic forces: 

o electrostatic repulsion (Double-layer forces), 
o van der Waals attraction, 
o structural forces 
o Bom repulsion. 
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We will not discuss sterlc Interactions because they are not 

pertinent to the system under discussion. 

After we have been Introduced to the basic forces we will discuss 

DLVO theory and net potential energy curves for the flocculating 

system. 

Electrostatic repulsion 

From the previous section on clay we recall that kaolliilte has a net 

negative surface charge of 0.15 to 0.2 C/m^. Because of this net 

surface charge, a layer of Ions with an opposite charge Is developed 

around the particle. If one considers both the surface charge on the 

particles, and the sum of the counter-Ion atmosphere around the 

particle, the system Is electrically neutral. The Ions In the 

atmosphere around the particles, which are, for the most part, 

positively charged. Interact, and cause the particles to repel each 

other. This is shown in Figure 3, and is referred to as 

electrostatic repulsion. The term double layer refers to early 

attempts to model the system as a simple parallel plate capacitor 

with one set of charges on the particle surface and the opposing 

charges in a layer at a fixed distance from the surface. This simple 

model is called the Helmholtz model (Bennett and Hulbert, 1986), and 

is shown in Figure 4. This model quickly gave way to models which 

recognized that the ions form a diffuse layer around the particle and 

not restricted to a plane. 
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Figure 3. Electrostatic repulsion between the like-charged ion 
layers tends to prevent coalescence of particles in 
suspension 
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Figure 4. The Helmholtz model of a charged particle in suspension, 
in which oppositely charged layers of ions are separated 
by a distance d 
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The diffuse layer Is the result of a number of Interacting physical 

phenomena including (van Olphen, 1977; Israelachvlll, 1986): 

o the oppositely charged Ions In solution are attracted to 
the particle surface, 

o the like charged Ions are repelled from the surface of the 
particle, 

o and the action of thermal diffusion tends to evenly 
distribute the Ions. 

The final result Is a distribution of counter-Ions similar to the 

distribution shown In Figure S (Hlrtzel and Rajagopalan, 1985). The 

diffuse layer model assumes that the Ionic charge distribution can be 

described by the Poisson-Boltzman equation (Hlemenz, 1986). This 

equation does not have an explicit solution, but a number of limiting 

cases have been solved. We will briefly consider two of these 

limiting cases. 

Debve-Huckel approximation This limiting case assumes that 

the potential across the diffuse layer is low. This model has very 

limited applicability, but one very Important and frequently used 

quantity came out of this model; the Debye length. The Debye length 

is usually referred to using the greek letter k. The quantity 1/k Is 

sometimes referred to as the double-layer thickness, and is used as a 

yardstick for comparing all other distances to the double-layer. It 

should be noted that this is not actually the thickness of the 

diffuse layer, but is equal to the plate separation of an equivalent 
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DIFFUSE LAYER BULK OF SOLUTION 

STERN LAYER 

-PLANE OF 
SHEAR 

PARTICLE 

œNCENTRATION 
OF POSITIVE 
IONS NERNST POTENTIAL ELECTRIC, 

ZETA POTENTIAL 

CONCENTRATION OF 
NEGATIVE IONS 

Figure 5 .  Theoretical representation of the Ion structure around a  
charged particle based on the Stem model 
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capacitor. The following equation Is the mathematical expression for 

the Debye length (Hlemenz, 1986). 

2 ''z 4 "1. 
e « K T 

e - 1.60x10-19 C 

«Q - 8.85x10-12 C^/J-M 

«P - 80 (strong function of temperature) - (relative di

electric constant) 

e - 6^6  ̂ - 7.08x10-10, c2/J-M 

K - Boltzman's Constant - 1.38x10-^^j/degree K 

T - Temperature Kelvin - 273.15 + Degrees C 

n^ - 1000 

- Moles of Ion with valence 

- Âvogadro's Number - 6.02xl023 

%Zl\o- 1000 

- 21 

I - Ionic Strength 

Gouv-Chapman theory This theory also starts with the basic 

Folsson-Boltzman equation, however, the model developed using this 

theory Is not restricted to low potential. The Gouy-Chapman theory 

Is not without limitations. For Instance, this model does not work 

well at the surface of the particle. This, however, Is not a real 

concern In the context of turbulent flocculatlon. We are Interested 

In particle-particle Interactions In the suspension, and as we will 

see, the particle surfaces probably never touch In a real floe. 
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One last refinement of the double-layer model which Is sometimes of 

Interest Is the Stem layer. If the magnitude of the surface charge 

Is hl^ enou^, it is possible to form a saturated surface layer 

consisting of only oppositely charged ions next to the surface of the 

particle (Hlemenz, 1986). This is also seen in Figure 5. 

In applying the double-layer model to the electrostatic repulsion 

Interaction of the two surfaces approaching each other, it is 

necessary to assume that either the surface charge remains constant 

or the surface potential remains constant. Israelachvlll (1985) 

notes that, in general, the interaction potential will be somewhere 

between these two limits. The repulsive energy is always larger with 

the constant charge assumption than with the constant potential 

assumption (Honig et al., 1971). The following equation is the 

mathematical expression for the electrostatic potential energy in the 

vicinity of the surface as the result of the diffuse double layer as 

based on the Gouy-Chapman model. 

^ -
64 n KTr' o o .(-Md) 

^ - potential energy (J/m^) 

d - separation distance (m) 

T - Degrees Kelvin 

K - Boltzman's Constant (J/Degree K) 

K - Debye Length (1/m) 

n^ - 1000 Mj - number of charge determining ions 

r - ;where x is distance above the surface(m) 

r_ - r at the surface. 
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e - 1.60x10-19 (G) 

Table 4 (Rajagopalan and Klm, 1981) contains the relaxation times for 

the double-layer, the time of charge adjustment, and the time between 

Brownian collisions. 

Table 4. Relaxation time for various processes 

Process Range of Values 

Relaxation time of double layer (time 
for readjustment of the double layer) -10"° sec . 

Time for Brownian collision -10"^-10"^ sec 

Time for charge adjustment -10"*-10"4 sec 

The values in Table 4 are calculated values using the following 

approach (Rajagopalan and Kim, 1981). The relaxation time for the 

readjustment of the double layer and the relaxation time for Brownian 

collisions are taken as the average time needed for the displacement 

of the atoms or particles across the double layer. The relaxation 

time for charge adjustment is determined by the exchange current 

density, which is the rate of transport of charges across the double 

layer in either direction when the interface has reached its 

equilibrium potential difference. The relaxation time for charge 

adjustment depends on the detailed structure of the double layer, 

such as the concentrations and mobilities of ions on either side of 

the double layer. 



www.manaraa.com

30 

The time scales Involved make It clear that there may Indeed be 

situations were the constant potential assumption Is neither 

appropriate nor adequate (Rajagopalan and Kim, 1981). If the 

constant charge assumption Is to be employed, a surface charge 

estimate for clean kaollnlte Is available from the literature (see 

previous section). 

If one Is to use the constant potential assumption, It Is suggested 

that zeta potential Is a useful estimate of surface potential. The 

zeta potential of a particle Is the electric potential In the double-

layer at the Interface between a particle which moves In an electric 

field and the surrounding liquid. When a constant electric field is 

applied to charged particles in suspension, the particles will reach 

a limiting velocity when the viscous drag force equals the 

accelerating force (Bennett and Hulbert, 1986). The magnitude of the 

zeta potential is considered a measure of the particle's repulsion 

for like charged particles (van Olphen, 1977). The zeta potential 

(r) of a system of particles may be calculated from the 

experimentally measurement of the steady motion of particles under 

the Influence of an electric field, and the following formula. 

J" - 4ff/iv / eE 
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V 

f 

E 

e 

- electric field (V) 

- liquid viscosity (N s) 

- particle velocity (m s"^) 

- medium dielectric constant (C V"^ m"^) 

» Zeta Potential (V) 

Zeta potential has traditionally been used as a measure of surface 

potential, but there Is now considerable disagreement In the 

literature over this practice, van Olphen (1977) states: 

"It has been realized that the seat of the zeta potential Is 
the shearing plane or slip plane between the bulk liquid and 
an envelope of water which moves with the particle. Since 
the position of the shearing plane Is not known, the zeta 
potential represents the electric potential at an unknown 
location.... Because of the 111-deflned character the zeta 
potential Is not a useful quantitative criterion of 
stability....this parameter has lost Its significance." 

Others view the parameter In a more benevolent light. Bennett and 

Hulbert (1986) admit that the zeta potential allows some quantitative 

description of the properties of a clay suspension. Schenkel and 

Kitchener (1960) state that It seemed reasonable to employ 

experimentally determined zeta potential, assumed to be the potential 

drop In the diffuse part of the double-layer, as being roughly the 

same as the potential relevant In the theory of repulsion between 

Interacting double-layers. He noted that any value taken for the 

surface potential would be uncertain. Ottwelll (1987) found measured 

values of surface potential on clay surfaces agreed very well with 

zeta potentials. 
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Bennett and Hulbert (1986) have suggested that a zeta potential on 

the order of 20-30 mV is the "critical zeta potential", which needs 

to be exceeded in absolute value if the particle suspension is to be 

stable. Figure 6 is an indication of the relative stability of 

particles systems at different zeta potentials (Zeta Meter, Inc.). 

This figure presumes that if the zeta potential, and therefore the 

surface potential, is below a certain value the particles will 

approach each other close enough for van der Waals attraction to 

cause bonding. 

Van der Waals attraction 

If two like particles are brought close enough together, they will 

tend to adhere to each other due to strong, short range forces of the 

type that hold the particles together internally. These forces are 

referred to as the van der Waals-London forces (Bennett and Hulbert, 

1986). The strength of these forces is small compared to the forces 

generated by a chemical bond, as seen in Table 5. These forces are 

strong enough, however, to cause irreversible flocculation under some 

conditions. 

As noted by Russel (1987) with regard to van der Waals forces in 

flocculation "the possibility of irreversible flocculation caused by 

strong van der Waals-London forces has preoccupied colloid science 

for decades". 
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What ZP values reflect stability? How about flocculatlon? 

— 120 —70 —50 —30 —20 —10 —5 0+3 
excellent | good | modwate 

transition 
poor 1 fair | excellent 

DISPERSION 
transition 

AGGLOMERATION 

Figure 6. The effect of zeta potential on particle stability; ZF 
values are In millivolts 
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Table 5. Relative bond strength 

Bond Type Strength KJ/mole 

(Israelachvlll, 1985) (Camp, 1968) 

Co-valent 500 210-420 
Hydrogen 10-40 12-42 
Van der tfaals 1 4-8 

Although the forces are manifested at a macroscopic scale, they are 

generated at an atomic level. In general, the van der Waals forces 

can be thought of as an induced dlpole-Induced dipole interaction 

between atoms. The van der Waals interaction is essentially 

electrostatic, arising from the dipole field of an atom "reflected 

back" by a second atom that has been polarized by the field of the 

first atom (Israelachvili, 1985). Consideration of the Bohr atom 

will yield a qualitative understanding of these forces. In the 

simplest Bohr atom the electron orbits a proton, and there is no 

permanent dipole moment. However, at any instant there exists an 

instantaneous dipole of moment whose field will polarize a nearby 

neutral atom giving rise to an attractive interaction (Israelachvili, 

1985). 

The interactive energy between two identical atoms was derived by 

London in 1930 using quantum mechanical perturbation theory. 

London's expression for the interaction energy is as follows 

(Israelachvili, 1985): 
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w(t) - (-3/4 a h i/)/(4 ir r® - C/r* 

h 

a - electronic polarlzablllty of second atom (C^ J'^) 

- Planck's constant; 6.626 x 10"^^ J s 

- orbiting frequency of the electron, which for the Bohr 

« o 

atom Is 3.3 x 10^^ sec"^ 

- permittivity of freespace (C^ J'^ m"^) 

r separation distance of the atoms (m) 

w(r) - London dispersion Interaction free energy (J) 

The attractive interaction of two atoms drops off as an Inverse 

function of the separation distance to the sixth power. When dealing 

with a solid, which is a composite of many atoms, the interaction 

drops off as an Inverse function of the separation distance squared 

(van Olpheii, 1977). This Increase in range is due to the geometric 

effects. Israelachvill (1985) notes that anything larger than 0.5 nm 

must be treated as a particle or its attractive interaction will be 

under-estimated. Many of the current attractive interaction models 

assume that the net attraction from a composite of molecules is the 

sum of all of the attractions, i.e., addltlvlty. This is not true. 

The addition of palrwlse potentials ignores the fact that the field 

being reflected back by other atoms in the area Increase the 

attraction. The net effect is that the van der Waals force between 

the particles is enhanced and the attractive forces are higher than 

would be expected based on the two-body problem alone. The values 
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estimated using the two-body approach can be as much as 30 percent 

low (Israelachvlll, 1985). The range of attractive forces between 

molecules is on the order of a few nanometers, but the range of the 

attractive forces between particles is up to 50 nanometers from the 

surface (Rigby et al. 1986). 

The estimation of the attractive interaction potential between two 

bodies involves summing or integrating the interactive energies of 

all of the atoms in one body with all of the atoms in a second body. 

This summed interaction is material and geometry specific. 

Israelachvili (1985) and Hiemenz (1986) both contain tables of 

appropriate equations for various geometries. Parallel flat plates . 

will be considered briefly, since clay has a plate structure. The 

following equation is for the flat plate geometry: 

A 

S 

d 

van der Waals attraction, infinite flat plate (J m'^) 

Hamakers constant (J) 

plate separation distance (m) 

plate thickness (m) 
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The parameter "A", Is referred to as Hamaker's constant, and Is named 

after H.C. Hamaker, who did much of the original work in this area. 

The Hamaker's constant takes into account the effect the material has 

on the strength of the interaction. Frequently the constant will be 

written as "Ai23"' means the Hamakers constant for material 1 

and material 2 acting across material 3. Israelachvili (1985) gives 

the following formula for calculating the constant A for two 

identical materials interacting across a third: 

A --g-K T • '3 
«1 + «3 

3hv 

16(2) 0.5 
( 4 - "3)^ 

i/g - adsorption frequency (s'l) 

n^ - refractive index of material i 

- dielectric permitivitty of material i 

The other variables as previously defined. 

This is the Hamakers constant calculated based on the Lifshitz 

theory. It is seen that to calculate A one must have the dielectric 

constant (e^), and the refractive index (n) for each material. This 

information is widely available for water, but is less available for 

kaolinite. The dielectric constants are readily available for mica 

and quartz. Since all three of these minerals are silica 
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tetrahedrons (Mitchell, 1976), It seems reasonable to estimate A for 

kaollnlte based on the values for mica and quartz. Table 6 contains 

values calculated using the formula given above, and values reported 

by Rlgby et al. (1986). 

Table 6. Hamakers constants; calculated values based 
on Llfshltz theory, and measured values 

Hamakers constant(A); Solid-Water-Solid (J) 

Solid Israelachvlll(1985) Rlgby et al. (1986) 

20 "C 5 "G 

Mica 2.00x10-2? 1.99x10-2? 
Quartz 6.04x10-21 5.91x10-21 i.70x10*20 
Fused 
Silica 0.85x10-20 

From this table It Is seen that the value of A Is not highly 

sensitive to temperature change. 

Solvation forces 

Solvation forces are very short range forces related to the structure 

of the liquid water adjacent to the solid-liquid Interface. 

Israelachvili (1985) notes that, between macroscopic particles, the 

electrostatic repulsion and van der Waals-London forces are the two 

most important forces, but at short distances, i.e., under 1 to 3 nm, 

the solvation forces dominate over both of these. One must wonder, 

what role, if any, will these solvation forces play in determining 

the strength of the floe which are formed. 
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As noted earlier, the water adjacent to a solid surface Is 

structurally different that the water in the bulk liquid, but within 

a distance of four molecular layers, these differences have 

disappeared. Figure 7 shows how solvation forces vary as two 

surfaces approach. Sigma (a) in Figure 7 is the incremental change 

in the separation distance between two surfaces corresponding to the 

period exhibited by the force oscillation shown in Figure 7(b) as two 

surfaces approach each other. Measurements which have been performed 

on the water mica system have found a sigma (a) of 0.25 nm for water 

(Israelachvili, 1985). This correlates quite well with the diameter 

of a water molecule. From this sigma, and the four layers of 

structured water at a solid surface, it appears that the structure of 

the water is indeed responsible for these solvation forces. However, 

It is not the simple fact that the water molecules tend to lie in 

semi-ordered layers at the surface which causes these forces. It Is 

the fact that It takes energy to re-arrange the hydrogen bonds 

between the water molecules and disrupt the ordering as the two 

surfaces approach each other (Israelachvili, 1985). Recall that for 

a simple ideal liquid, the liquid interacts with its twelve nearest 

neighbors. Water is a highly structured hydrogen bonding liquid, 

which interacts with only its 4-5 nearest neighbors. If the surface 

is Incapable of hydrogen bonding, the water will arrange itself to 
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Figure 7. Structural changes in a liquid as two surfaces approach; 
(a) The molecular ordering of water at the surface changes 
as the separation distance D changes. Note that the 
density of the liquid molecules in contact with the 
surfaces varies between maxima and minima, a - 0.25 nm for 
water, (b) Corresponding solvation pressure (schematic) 
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minimize the number of unsatisfied hydrogen bonds near the surface. 

This is the liquid structure which is being disrupted during the 

close approach of two solid surfaces. Note from Figure 7(a) that 

once the solvation interactions become important, as seen from the 

pressure changes in Figure 7(b), the density of the liquid changes 

from that of the bulk liquid. Both e and n of the Hamakers constant 

depend on p. Because of the interaction between A and the solvation 

interaction we must conclude that van der Waals and oscillatory 

solvation forces are not additive. Indeed, it is more correct to 

think of the oscillatory solvation forces as van der Waals force at 

small separation distances with the molecular properties of the 

liquid taken into account. 

Bom repulsion 

Bom repulsion is commonly sited as one of the main forces in 

particle -particle interaction, along with electrostatic repulsion 

and van der Waals-London interaction. It is the repulsion caused by 

the overlapping of electron clouds as the particles approach each 

other on a molecular scale. Because of the solvation forces in an 

aqueous system, it is unlikely that Bom repulsion will be active. 

DLVO Theory 

DLVO theory combines the aforementioned Individual forces into a 

single net particle-particle interaction potential. The theory is 

named after the four researchers who developed it simultaneously In 
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the early 1940*8; Derjaguln, London, Verwey, and Overbeck (DLVO)(van 

Olphen, 1987). This net particle-particle interaction potential 

allows us to predict in a semi-quantitative manner whether or not a 

system will flocculate. Historically the DLVO theory included only 

electrostatic repulsion (Vg^) and van der Waals attraction (V^) (van 

Olphen, 1987). Current literature frequently adds solvation 

interactions and Bom repulsion. For the purpose here, which is to 

consider primary minimum versus secondary minimum flocculation, it is 

only necessary to consider and V^. The total interaction 

potential is defined as: 

Vt - VR + VA 

The form of Vj is seen in Figure 8. This is a typical potential 

energy curve showing the interaction between two particles at varying 

separation distances. On this curve a positive value indicates 

repulsion and a negative value indicates attraction. The greater 

that magnitude of the negative value the stronger the bond. Notice 

that there are two minimums, corresponding to two separation 

distances at which particles would bond to each other. The deep 

minimum at the shortest separation distance is called the Primary 

minimum. The second shallower minimum is called the secondary 

minimum and produces a much weaker bond. The hump in the curve 

between the two minimums is called the flocculation barrier. The 

location, depth, and width of these two minimums is a function of Vg^ 

and V^. There is nothing which can be done to increase the 
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Figure 8. Potential energy versus Interpartlcle distance fjor two 
particles in suspension; there are two mlnlmas in potential 
energy 
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attractive potential of a system. Thus, If one desires to decrease 

the stability of a colloidal suspension, It Is necessary to reduce 

the repulsive forces. The repulsion portion of the curve is a 

function of surface charge and solution chemistry. In the context of 

water treatment, the surface charge is usually modified. If we 

reduce or eliminate the surface charge the barrier to flocculatlon is 

reduced or removed. 

With some materials secondary minimum flocculatlon is possible. 

Schenkel and Kitchener (1960) point out the possibility of 

flocculatlon in a secondary minimum which may lie at a separation 

distance as great as 100 to 200 nm. It must be realized that floe 

formed in the secondary minimum can be broken up by gentle agitation, 

but floe formed in the primary minimum is much more difficult to 

breakup (Bennett and Hulbert, 1986). For this reason flocculatlon in 

the primary minimum is often referred to as irreversible flocculatlon 

(Bennett and Hulbert, 1986). Schenkel and Kitchener (1960) used 

gentle mixing as a test for primary minimum flocculatlon versus 

secondary minimum flocculatlon. Based on this it is apparent that 

the practical objective in water treatment must be to achieve 

flocculatlon in the primary minimum, by removing the repulsion 

barrier. 

Everything presented so far has been conceptually correct, but has 

ignored the non-ideality of the system. In a real systems things are 
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much more complex than in the system presented here. Bennett and 

Hulbert (1986) presents a discussion of the DLVO model, and has the 

following to say about the limitations placed on the model by the 

assumptions which are used: 

"Of these (assumptions) the most restrictive is that the 
particles are perfect parallel infinite planes. Real 
particles are three dimensional and may have any orientation. 
Also the potential is not necessarily the same on all of the 
particles or on all of the faces of à single particle. So 
instead of a two dimensional curve showing the relationship 
between separation distance and potential energy for two 
particles, a four dimensional representation would be 
required. The potential at each point in space is determined 
by the effects of all of the particles in the vicinity and 
all of the particles are free to move. One can see that the 
theoretical treatment of a system of clay becomes very 
difficult." 

Figures 9 and 10 are presented by Bennett and Hulbert (1986) as 

examples of a clay water system with some of the non-ideality 

accounted for. Note that although the particles are still ideal 

plates, they are free to rotate with respect to each other and there 

are multiple particles interacting. Figure 9 is a graph of the 

potential energy relative to another particle as a function of 

position, this figure is analogous to an ordinary topographic contour 

map. Figure 10 is the same system presented in Figure 9, with a 

higher solution electrolyte concentration, which has the same effect 

as lowering the surface charge on the clay. The negative numbers 

represent area of lowest potential energy, and the particles will 

tend toward those minimum points. Both of these figures represent 

flocculation in the primary minimum, but the particles in Figure 10 
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Figure 9. Potential energy in the vicinity of clay particles as felt 
by another particle that is free to translate in a plane 
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Figure 10. Potential energy In the vicinity of clay particles In a 
system possessing greater electrolyte concentration than 
depicted In Figure 9. Contours represent potential energies 
as felt by another particle that is free to translate in a 
plane 
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are more completely destabilized than the particles in Figure 9. 

Thomas and McCorkel (1971), in working with a mono-dispersed system 

of spheres, also found that the degree.of destablllzation affected 

the shape of the floe formed. He found that if the particles were 

well destabilized the floe were isotropic. However, if the particles 

were not well destabilized 50% times more particles had enough energy 

to stick to the end of a chain than had energy to stick to the 

middle. 

Van Olphen (1977) described the many ways that clay platlets can 

associate with each other. He states that, in a real clay system, 

one must be concerned with two double-layers interacting in three 

modes ; face-to-face, edge-to-edge, and face-to-edge. Again, the 

point being made is that the system is very complex, and the best we 

can hope for from the DLVO model is a crude qualitative understanding 

of the system. 

Temperature effects 

Of the forces which have been discussed, electrostatic repulsion is 

the only one which is noticeably temperature dependent. As noted by 

Bennett and Hulbert (1986), repulsion Increases with a decrease in 

temperature, but such a change has almost no impact on London or Born 

interaction energies. Looking back at Table 6, one can see how 

little Hamakers constant changes over the temperature range of this 

work. Thus one would expect that, if temperature reduction has a 
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measurable effect, that effect would be to Increase the energy 

barrier and reduce the flocculatlon efficiency. It is anticipated, 

based on the equation for V^, that any Increase in the repulsion will 

be very small, since the change in temperature experienced in this 

work is relatively small on the kelvin scale. 

Discussion 

All of the forces discussed in this section are significant in 

determining particle interactions at a very small scale, and each 

force will be dominant at some separation distance and surface 

charge. Under the conditions which are of interest in water 

treatment flocculatlon, electrostatic repulsion is the naturally 

dominant force. If the electrostatic repulsion is partially 

suppressed and flocculatlon occurs in the secondary minimum 

(separation distances of 20 to 50 nm between particles), the floe 

will be extremely fragile. In this flocculatlon mode gentile 

agitation will disperse the floe back to primary particles. When the 

energy barrier is sufficiently suppressed, flocculatlon will occur in 

the primary minimum (separation distances of 3 to 5 nm between 

particles). In this mode a robust floe is formed, and the process is 

often referred to as irreversible flocculatlon. Structural or 

solvation forces are active from the surface out to 1 to 2 nm. It is 

expected that these forces will not act to prevent flocculatlon, but 

once flocculatlon occurs they may act to reduce the bond strength. 

If the particle surfaces are not allowed to approach each other any 
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doser than 4 to 8 molecular diameters (4 to 8 * 0.25 nm - 1 to 2 

nm), the van der Waals attraction will be much weaker than it would 

be if the surfaces approached each other until Bom repulsion became 

dominant. 

Turbulence 

In the last section we discussed the forces involved in colloid 

stabilization and destabilization. Once the colloid is destabilized 

it is necessary to bring the particles close enough to each other for 

van der Waals attraction to take over. The act of bringing the 

particles together is often referred to as particle transport. If 

the particles are small and destabilized, simple Brownlan motion will 

cause flocculatlon given enough time. However, because of the 

economics involved in municipal water treatment, It is desirable to 

Increase the rate of flocculatlon. This is done by carrying out the 

flocculatlon in a turbulent flow field. In this section we will 

discuss how the turbulent flow field relates to the flocculatlon 

process. 

To understand turbulent transport it is first necessary to understand 

the phenomena of turbulence. Hinze (1975) gives the following 

definition of turbulence: 

"Turbulent fluid motion is an irregular condition of flow in 
which the various quantities show a random variation with 
time and space coordinates, so that statistically distinct 
average values can be discerned." 
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Although this definition may be concise It does little to provide us 

with an Intuitive understanding of turbulence and the basic 

underlying processes which drive turbulence. 

Turbulence Is frequently described as an energy cascade (or eddy 

cascade); where energy Is put Into the system at large length scales. 

It then cascades down to small length scales through the mechanism of 

vortex stretching, and finally leaves the system through viscous 

dissipation. L.F. Richardson said It this way (Reynolds, 1974): 

"Big whirls have little whirls, 
that feed on their velocity; 
and little whirls have lesser whirls, 
and so on to viscosity." 

Hlnze (1975) says that turbulence can be thought of as a super-

positioning of ever smaller periodic motions or eddies. Voke (1983) 

says: 

"The turbulent flow of viscous fluid is one of the most 
complex and beautiful macroscopic phenomena found in nature. 
It is essentially four dimensional, involving the time 
dependent Interchange of energy and momentum between vortices 
of different sizes and lifetimes, ..., with respect to each 
other in three dimensional space." 

Perhaps the best way to gain an intuitive understanding of the 

turbulent flow field is to start with a simple model of turbulence, 

i.e., the Kolmogorov energy spectrum, and build a mental image from 

there. Figure 11 represents a typical energy spectrum for a high 

Reynolds number flow. This form of the energy spectrum, is 

frequently called the Kolmogorov spectrum law, because Kolmogorov was 
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Figure 11. Form of the three dimensional spectrum E(k,t) in the various 
wave number ranges 
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the first to arrive at this result (Hlnze, 1975). The graph 

represents the relationship between eddy size and the energy 

contained In each eddy size (Hlnze, 1975). Various aspects of this 

energy spectrum will be discussed in the following paragraphs. The 

purpose of this discussion is to identify the major components of the 

turbulent flow field and the specific characteristics which will have 

an impact on orthokinetic flocculation. 

The y-axls on Figure 11 is the kinetic energy (E(k,t)) contained In a 

specific eddy size at a fixed point in time. If the turbulence is 

steady state the average spectrum will be constant over time. The x-

axis is the wave number, which is the inverse of the vortex size 

(1/d). Thus a large wave number corresponds to a small eddy. The 

variables kg and k^ represent the eddy sizes which contain the 

majority of the energy, and dissipate the majority of the energy 

respectively. 

The largest turbulent eddies In the turbulent flow field represent 

the length scale at which energy is being fed into the system. These 

large eddies are Inertia controlled and are very little effected by 

viscous dissipation. The length scale of the large eddies become 

smaller through the mechanism of vortex stretching, and the energy of 

the large eddies is cascaded to smaller and smaller eddies (Frost and 

Moulden, 1977). Note that the words eddy and vortex are used 

interchangeably in the turbulence literature, although vortex is 
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probably the more correct of the two. The stretching process does 

not go on Indefinitely. Eventually, an eddy size Is reached where 

the system becomes viscosity dominated rather than Inertia dominated. 

At this point the vortex is no longer a free vortex, i.e., it becomes 

bound by viscous forces, and the energy cascade is stopped. Once the 

vortices reach this length scale, their energy is quickly dissipated 

to heat, and below this length scale we no longer have a turbulent 

flow field. 

Production rang? 

Frost and Moulden (1977) refers to this range as the "energy bearing 

anisotropic eddies". This range is most frequently referred to, 

however, as the "production scale eddies". The reason for this is 

easily seen in Figures 12 and 13 (Gorrsin, 1961). The eddies in this 

size range represent the spectral location of the kinetic energy 

Inflow. Vortices in this size range are produced directly by the 

velocity gradients Induced by the mixing equipment. 

This introduction of kinetic energy into the system is shown 

schematically in Figure 12. The box furthest to the left represents 

the kinetic energy in the bulk flow. This bulk flow kinetic energy 

is responsible for direct production of the largest eddies in the 

second box. Figure 13 shows this same concept in the wave number 

space reference frame. In Figure 13 we see that the majority of the 

energy goes into the system in the small wave number region, which 
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corresponds to the large eddy sizes. This large eddy range can be 

divided Into two sections (Hlnze, 1975). The first section consists 

of the very largest eddy sizes which are strictly a function of 

reactor geometry, and exist under all turbulent flow conditions. 

These are the eddies which are largely responsible for the convectlve 

diffusion In the turbulent flow field. This convectlve diffusion Is 

sometimes referred to as eddy dlffuslvlty. The second, and smaller, 

range of eddies In this region are a function of the energy per unit 

mass of liquid-time (e). This size range only exists If there is 

enough energy being put Into the system to stay ahead of the downward 

cascade of energy to the smaller size eddies. None of the eddies In 

the production range are sensitive to viscosity effects, and 

therefore temperature effects. Placek and Tavlarldes (1985) reported 

that these production scale eddies In a mixed reactor equipped with a 

Rushton Impeller, are 1/2 to 1 times the blade height. 

WrgY çpntplning eddis? 

In the low-wave-number range of the energy spectrum, a peak occurs at 

the wave number value kg. The range of wave-numbers around kg, where 

the eddies containing the majority of the turbulent flow field total 

kinetic energy are found, Is called the range of energy containing 

eddies (Frost and Houlden, 1977). The variable kg. In Figure 11, Is 

the wave number of the average size energy containing eddy. If the 

diameter of the eddy, I.e., the eddy length scale, Is d, then kg Is 
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1/d. The structure of the turbulence in this region is determined by 

(Hinze, 1975): 

The first of these, e, is Important because the energy dissipated at 

high wave numbers Is the same energy supplied by the large eddies 

(Frost and Moulden, 1977). Since the energy must pass through the 

energy containing eddy range, it effects the shape of this range. 

Time is important because the relative rate of change of the total 

kinetic energy is the same order as the time scale of the large 

eddies. Viscosity is important to the shape of this portion of the 

spectrum unless Re »>1. If the Reynolds number of an eddy of size 1 

is greater than 10^, the structure of this region is independent of 

viscosity (Frost and Moulden, 1977). The following definition for 

Reynolds number is used here: 

Re - u'd/i/ 

where d is the length scale for the eddy associated with kg, i/ is 

kinematic viscosity, and u' is the root mean square velocity in the 

flow field, i.e., u' - ((ave u^))®*^. Argaman and Kaufman (1968) 

report a volume weighted u', at various G values, for the reactor 

selected for use in this study. If we use the u' given by Argaman 

and Kaufman and assume that d is of the same order of magnitude as 

the impeller blade height, i.e., the size of the largest eddies 

present, we will establish an upper bound for the Re number in the 

o 
o 
o 

e energy/unit mass-time 
t time 
1/ kinematic viscosity. 
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reactor used In this study under the operating conditions that were 

used. Note that this will overestimate d and thus will overestimate 

the Reynolds number. Figures 14 and 15 are the estimated eddy Re 

associated with kg for the turbine geometry and the stake & stator 

geometry used in this research respectively. These geometries will 

be discussed later. The important thing to note here is that in 

neither case is the Re even close to 10^. Thus for this system one 

would expect the energy containing range to be viscosity dependent. 

Inertlal subrange 

The inertial subrange only exists in turbulent flows with an eddy Re 

greater than 10^ (Frost and Moulden, 1977). Since this is not the 

case in this work, it is very unlikely that a viscosity Independent 

inertial subrange exists in the reactor conditions employed in this 

research. 

Universal equilibrium subrange 

This is the eddy size range in which the majority of the energy 

dissipation takes place. In fact this range is frequently called the 

"dissipation subrange". In Figure 12, the second box from the right 

would represent this eddy size range. Figure 12 shows that the 

kinetic energy moves from the small eddies directly to the internal 

energy of the fluid (Corrsin, 1961). Figure 13, once again, shows 

this same information in a wave number space reference frame. In 

Figure 13 energy is put into the system at the large eddies, cascaded 
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Figure 14. Approximate eddy Reynolds number for the turbine Impeller 
various temperatures 
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Figure 15. Approximate eddy Reynolds number for the stake and stator 
Impeller at various temperatures 
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down to the small eddies, and then leaves the system at the small 

eddies through viscous dissipation. Kolmogorov speculated that small 

scale eddies, In a homogeneous turbulent flow, lose the preferred 

orientation of the mean rate of strain, taking on a universal 

structure or Isotropy. This was referred to as local Isotropy by 

Kolmogorov (Frost and Houlden, 1977). For this universal structure 

to exist the eddy Re number referred to earlier must be on the order 

of 100 (Frost and Moulden, 1977). In the part of the energy spectrum 

where the universal structure might exist, the time scales are much 

shorter than the time scales in the mean flow. Thus the small scales 

react quickly enough to be considered at equilibrium with the mean 

flow at all times. Thus the name "universal equilibrium range" 

(Frost and Houlden, 1977). Hlnze (1975) also states that even if the 

large scales of turbulence are strongly anisotropic, the small scale 

turbulence will tend to be Isotropic. The reason for this is 

illustrated nicely by Figure 16 (Bradshaw, 1971). If one starts at 

the top of the energy cascade and assumes stretching in only 1 

direction (Z), the stretching is nearly isotropic in only four 

generations. 

Since the naturally occurring colloids are less than 10 pm in size, 

it is likely that if any eddy size will be Important in flocculatlon, 

it will be the universal equilibrium range. This leads us to ask how 

can we characterize this smallest scale of turbulence. The k^ in 

Figure 11 is the wave number associated with the size of eddies that 
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Figure 16. "Family Tree" showing how vortex stretching produces small-
scale Isotropy. The labels are the directions of stretching 
In each "generation": the length scale decreases from one 
generation to the next 
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provide the main contribution to thé total energy dissipation (Hlnze, 

1975). It should be noted that at moderate Reynolds numbers, viscous 

dissipation affects the turbulent flow structure over the entire eddy 

size range, except the very largest eddies. Figure 17 shows the 

relationship between the energy spectrum and the dissipation spectrum 

In wave number space (Corrsln, 1959). Kolmogorov used dimensional 

reasoning to drive the length scale (q) which corresponds to k^, 

i.e., - 1/q. This special length scale is referred to as the 

Kolmogorov microscale, and is defined as: 

1/4 

? -
u 
€ 

V - kinematic viscosity 

€ - energy/unit mass-time 

Following Kolmogorov's development of 7, one notes that this length 

scale represents an eddy whose Reynolds number is equal to 1. By 

definition, a Reynolds number of 1 indicates that the inertial and 

viscous forces are equal at this length scale. This implies that 

viscous dissipation will peak at a wave number greater than or equal 

to kj. Based on this line of reasoning, it is common to define kj -

1/q, which is to say k^n - 1 (Hlnze, 1975). However, various 
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researchers have shown both experimentally and theoretically that the 

dissipation peak Is actually at a smaller wave number (larger eddy 

size) than l/q. Hlnze (1975) reports values of which range from 

0.5 to 0.09. What this means In the context of flocculatlon Is that 

much of the energy put into the reactor at the production range, Is 

not available for particle transport at and below the Kolmogorov 

mlcroscale. Looking at the energy dissipation spectrum in Figure 17 

we can see that the turbulent energy dissipation does not reach far 

below the Kolmogorov mlcroscale. This is because, as we cross the k^ 

boundary, viscous forces soon become dominant and a free vortex 

cannot exist. This means that the mechanism driving the energy 

cascade is no longer present, and therefore the lower scale of 

turbulence has been reached. Below this scale, all particle 

transport is caused by localized shear fields. It is also noted that 

below the Kolmogorov mlcroscale, the rate of energy dissipation is 

none linear and the rate is decreasing. Figure 18, which is based on 

Argaman and Kaufman's (1968) work, contains calculated values for 

Kolmogorov's mlcroscale at various G-values, and temperatures. Since 

Figure 18 shows the relationship between G based on the volume 

averaged e and ij based on the volume averaged e, it Is the same for 

all Impeller geometries. It is interesting to note that the primary 

particles used in this work had an equivalent circular diameter of 

1.8 pm. This would place the primary particles well below the length 

scale of the smallest turbulent eddies. 
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To understand what is happening at scales smaller than the 

mlcroscale, it is necessary to consider the mechanism involved in 

vortex stretching. Sanitary engineering literature has typically 

Illustrated vortexes as small 2-dimenslonal spirals (AmlrtharaJah, 

1981). This leaves us with little appreciation of the true 

complexity of vortex stretching in a turbulent flow field. Figure 19 

is a sample of the traditional fluid mechanics Imagery used to 

illustrate vortex stretching (Tennekes and Lumley, 1972). Again, 

this communicates none of the true 3-dlmensional complexity. It is 

only recently that it has become possible, through computer 

simulation, to visualize 3-dlmensional vortex stretching. Figure 20 

represents two Isolated vortex tubes interacting (Zabrusky, 1987). 

Although Figure 20 begins to hint at the complexity of this process, 

it still Involves only two vortex tubes. In reality there are many 

vortex lines Interacting simultaneously. Frost and Houlden (1977) 

refer to the turbulent flow field as a tangle of vortex lines. 

Figure 21 shows six vortex rings arranged as the faces of a cube, and 

then allowed to interact over time (Glaberson and Schwarz, 1987). 

The tangle of vortex lines in the last frame looks like a pile of 

spaghetti, and this is the result of starting with only 6 vortex 

lines. Note that the two tubes in Figure 20 are identical in size. 

This is in fact a realistic situation. Frost and Moulden (1977) 

point out that only eddies of a comparable size can interact with 

each other. The cascade of energy takes place from neighboring size 

to neighboring size, there are no short cuts (Frost and Houlden, 
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Figure 19. Vorticity stretching in a strain field; (a) before 
stretching, (b) after stretching 
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Figure 20. Computer simulation: evolution with time of two identical 
circular tubes of vortlcity located in three dimensional 
space 
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Figure 21. Computer simulation: evolution of a vortex tangle from six 
vortex rings Interacting 
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1977). It is also Interesting that viscosity does not play an 

important role in vortex stretching. It is the fluid strain field 

which drives the stretching. 

What does all of this mean with respect to turbulent flocculation? 

Particles, like eddies, are only moved efficiently relative to each 

other by eddies which are similar in size to the particles. 

Therefore, it is unlikely that even the smallest turbulent eddies . 

will play a direct role in turbulent flocculatlon until the floe have 

grown very large (Koh, Andrews, and Uhlherr, 1984). However, one can 

see that the turbulent vortex tubes are space filling, and the 

process of stretching will create a myriad of localized shear fields. 

It is these localized shear fields which drive the flocculation. 

Assume the following: 

o the primary particles are smaller than the Kolmogorov 
microscale, 

o the primary particles are homogeneously dispersed 
throughout liquid volume. 

We can think of the mechanism for turbulent flocculatlon in the 

following way. For simplicity, consider the image of vortex 

stretching presented in Figure 19. In (a) there are two vortices of 

equal size. In accord with our previous assumptions, these vortices 

each represent a volume of fluid containing a homogeneous 

distribution of particles. Before stretching the particles are 

moving relative to the bulk flow, but are stationary with respect to 
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each other. As the vortex undergoes stretching, a localized velocity 

gradient (i.e., shear gradient) is induced in the fluid contained in 

the vortex, and this localized velocity gradient induces particle 

collisions. Thus, the vortices in the turbulent flow field are 

responsible for causing the collisions which result in floe growth, 

but not in the direct sense. The magnitude of the localized velocity 

gradient will be dictated by the diameter at which the vortex tube 

stops stretching. This is determined by the size at which the vortex 

tube ceases to be a free vortex and becomes bound by viscous forces. 

The Kolmogorov mlcroscale of turbulence is an approximate indicator 

of this eddy diameter. 

The entire discussion of turbulence to this point has dealt with 

idealized turbulence. That is turbulence which is homogeneous and 

isotropic, with no average bulk flow present. Specifically we have 

been discussing the model proposed by Kolmogorov. From this model of 

turbulence we have established the following information regarding 

homogeneous isotropic turbulent flows: 

o The largest eddies are strictly a function of reactor 
geometry, and only the largest eddies are a function of 
reactor geometry. 

o In a homogeneous turbulent flow field the smallest eddies 
will tend to be isotropic even if the larger eddies are 
anisotropic. 

o At the energy input typical of flocculation, the inertial 
subrange probably does not exist. 
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o Turbulent eddies only interact effectively with features in 
the flow field of nearly equal size, therefore even the 
smallest turbulent eddies do not interact with the primary 
particles. 

o Localized shear fields formed by the turbulent eddies do 
interact with the primary particles, and will cause 
flocculation. 

o Tlie smaller the Kolmogorov microscale of turbulence the 
more intense the localized velocity gradient. 

o The energy dissipation spectrum is non-linear, and below 
the microscale of turbulence (tj), the rate of dissipation 
is decreasing. 

This picture of turbulence, although simple and idealized, is 

qualitatively sound. Even recent turbulence work based on dynamical 

system theory. I.e., chaos theory, relies on the intuitive picture of 

turbulence developed by Kolmogorov, as well as many of his original 

assumptions (Schertzer and Lovejoy, 1986; Paladin and Vulplanl, 

1986). This is encouraging because it Indicates that, at least for 

intuitive purposes, this simple picture developed here is not to far 

from the mainstream of turbulence research. 

In addition to having a simple mental picture of turbulence, it is 

also necessary to understand that what has been discussed so far is 

more of a metaphor than a model (Lelbovlch and Lumley, 1986). If we 

would use this metaphor to interpret data. It is important that we 

consider how far we have stretched the assumptions upon which the 

metaphor is based. It is possible that the stretching of our 

assumptions may make the metaphor useless. For Instance, in a mixed 
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tank reactor the turbulence Is not Isotropic, or homogeneous, nor is 

bulk flow absent. Corrsin (1959) notes that the mean strain rate in 

all shear flows must tend to make the structure of the flow 

anisotropic in all parts of the spectrum. Fortunately, perhaps 

because of its inherent simplicity, the model is fairly robust. With 

a few qualifiers we will find it quite useful. 

In our idealized model, see Figure 12 (Corrsin, 1961), the large 

scale turbulence simply existed uniformly distributed throughout 

space, and drove the energy cascade. In an actual mixed tank reactor 

the energy balance is better represented by the block diagram in 

Figure 22 (Flacek et al. 1986), than by Figure 12. The fact that 

there are multiple pathways of varying degrees of importance in 

different regions of the flow leads to a situation in which the flow 

field can be extremely non-homogeneous. Looking at an example is 

perhaps the best way to see how this might impact the flocculation 

process. 

Figure 23 shows a Rushton impeller and the flow field near the 

Impeller. The Rushton Impeller is an impeller geometry similar to 

the turbine used in this study, and it has been the subject of 

extensive experimental and theoretical work. From the Rushton 

Impeller we can, perhaps, gain some Insight Into the complexities 

Inherent in the flow field of a stirred tank reactor. The first 

thing to notice is that not all of the energy put into the impeller 
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generates turbulence. Some of the energy Is dissipated directly by 

the impeller, and some is dissipated directly in the fluid shear. 

This means that only a fraction of the energy per unit mass (e) put 

into the reactor actually generates turbulence. Clark (1985b) 

indicates that as much as 30 percent of the total energy put into the 

reactor can be lost without producing any turbulence. 

It is interesting that the impeller does not generate turbulence 

directly. The impeller generates pseudo-turbulent flows, i.e., 

trailing vortices, impeller discharge flows, and recirculating flows, 

and these flows generate the turbulence. Although these flows 

generated by the impeller exhibit intense fluctuations, they are non-

random, and thus are referred to as non-random pseudo-turbulent flows 

(Van't Reit et al. 1976). The two major regions of interest are the 

recirculation flow in the majority of the vessel, and the flow in the 

impeller discharge region (Placek et al., 1986). The secondary flows 

in the recirculation region are induced by the impeller discharge 

flows. The flow in the impeller discharge region can be divided into 

two distinct flows. The radial discharge flow from the Rushton 

impeller, and the pair of trailing vortices. All three of these 

flows are shown in Figure 23. 

The accepted view of the turbulent structure around the Rushton 

impeller has changed radically in the last decade as our ability to 

measure turbulent structure has improved. The early work showed an 



www.manaraa.com

76 

extremely non-homogeneous flow field, and the turbulence was reported 

to be generated by the impeller and the zone associated with the 

impeller (Cutter, 1966; and Rao and Brodkey, 1972). It was also 

reported that the turbulence generated in these areas was dissipated 

where it was generated. Gutter (1966) published the following: 

o 5/10 of the total dissipation was in the impeller stream, 

o 2/10 of the dissipation was in the impeller itself, 

o 3/10 of the energy was dissipated in the rest of the tank 
volume. 

Rao and Brodkey (1972) and others published work which appeared to 

confirm Cutter's work. However, all of this early work was based on 

the assumption that: 

o the velocity fluctuations caused by pseudo-turbulence was 
turbulence, 

o turbulent energy was dissipated were it was created. 

In the vigorously recirculating flow field of the Rushton impeller 

neither of these assumptions is true. 

Recent work (Van't Reit and Smith, 1975; Van't Reit et al. 1976; 

Gunkel and Weber, 1975; Flacek and Tavlarides, 1985; and Calbrese and 

Stoots, 1989) has taken a more sophisticated approach to analyzing 

this flow field. This recent work has not only recognized the non-

homogeneous nature of the flow field, but it also accounts for the 

existence of pseudo-turbulent flow structures and corrects for the 
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anisotropic character of the turbulence. This has been Important In 

understanding the structure of the flow field around the Impeller. 

The following are some of the major points which have been 

established (Gunkel and Weber, 1975): 

o The pseudo-turbulent flows, associated with the trailing 
vortices, and the Impeller flow stream, are transported out 
of the Impeller zone. 

o Because the pseudo-turbulence Is transported out of the 
Impeller zone, much of the turbulence Is produced out away 
from the Impeller zone. 

o There Is a time lag between the production of turbulence, 
and Its dissipation. This time lag may give the turbulence 
an opportunity to leave the Impeller zone before It Is 
dissipated. 

It Is universally agreed that the flow In the Impeller discharge 

region Is more energetic than the flow In the recirculation region. 

The questions of Interest are; how much more energetic Is It?, and 

how much of the energy reaches a scale which will effect objects the 

size of floe and primary particles? If the energy Is generated and 

dissipated In an extremely energetic atmosphere, the energy will 

affect very small size scales. That Is, the local mlcroscale of 

turbulence will be very small. This will tend to enhance the early 

stages of flocculatlon, because the Increased energy at small length 

scales will Increase primary particle collisions. This Is, however, 

a two-edged sword. As the floe grow, the Intense energy In the 

Impeller region will break the floe up. Van't Relt and Smith (1975) 

estimates that 10 percent of the recirculation flow actually passes 

through the high energy portion of the Impeller region. This means 
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that 90 percent of the flow is not subjected to these stresses, and 

may grow floe large enough to be damaged by the high energy 

environment if it passes through the impeller. 

Because of the recent work, we have also come to understand that the 

flow field around the Rushton turbine impeller is much more 

homogeneous than once thought. Van't Reit et al. (1976) note that 

the localized energy dissipation found by Rao and Brodkey (1972) and 

Cutter (1966), of lOOx the average, was certainly to large. Van't 

Reit et al. speculate that lOx the average might be more reasonable. 

Okamoto et al. (1981) indicated that the rate of dissipation in the 

impeller discharge region was 6x greater than the bulk mean value, 

and that 70 percent of the energy was dissipated in the bulk flow. 

Flacek and Tavlarides (1985) drew the same conclusions from the data 

of Gunkel and Weber (1975). Glasgow and Kim (1986) report that a 40 

fita floe will experience a rate of strain 4.6% larger than the average 

energy input would lead one to anticipate. 

The velocity gradients in the recirculation region far from the 

reactor walls are smaller, and therefore the production rate of large 

vortices in this region is also small (Flacek et al. 1986). Figures 

24 and 25 show visually how the energy is dissipated in the vessel 

(Flacek et al. 1986). Figure 24 shows calculated kinetic energy 

profiles for the upper right quadrant of the vessel. Figure 25 shows 

the energy dissipation profile for the same region. What is 
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Important In these figures Is not the absolute values shown, but the 

pattern illustrating the areas of high and low energy dissipation, 

and the fact that high kinetic energy and high dissipation are a one 

to one mapping. The profiles in Figures 24 and 25, make it obvious 

that the system geometry is important in a mixed reactor. From these 

figures one can see that: 

o The areas of low energy in the recirculation region are 
areas which are less likely to be efficient in flocculation 
of small particles, and also less prone to causing floe 
breakup. 

o The high energy regions are likely to efficiently 
flocculate small particles, and also breakup the floe which 
are formed in the less energetic regions. 

Figure 26 shows an interesting characteristic of the Rushton impeller 

recirculation region. Note that the particle concentration in the 

less energetic area is lower. This is because the particles used in 

this simulation tended to settle out of these areas. This figure Is 

based on a computer simulation, and does not directly address the 

colloidal particles used in this work. However, it does point out 

that the flow field, under certain circumstances, may effect not only 

the energy available for inducing collisions, but also the number 

concentration of particles in the different flow regions. 

The Rushton Impeller example prompts the following observations: 

o It seems reasonable that mixer geometry may be an important 
variable In flocculator efficiency. 
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o It also seems that a mixer geometry which distributes the 
energy uniformly throughout the reactor vessel may have 
some advantages in flocculatlon where both growth and 
breakup are of concern. 

o One must wonder if ave e or 6, which is based on ave e, Is 
a reasonable parameter to use in quantifying a turbulent 
flow field which is obviously non-homogeneous. 

It is appropriate at this point to look at the information available 

on the effect of geometiry on flocculatlon efficiency. In reviewing 

this literature it is Important to bear in mind a number of things. 

First, there have been a large number of parameters used to measure 

flocculatlon efficiency. Researchers have used settled turbidity, 

filtered turbidity, filtration number, and relative turbidity. It is 

not easy to directly compare these various techniques, and none of 

them actually measure the ability of the.system to remove primary 

particles by flocculatlon. Settled and filtered turbidity represent 

an attempt to measure primary particles remaining after a subsequent 

unit process. This approach has two flaws. First, it is Impossible 

to separate the efficiency of the two unit processes, i.e., 

flocculatlon and filtration, or flocculatlon and settling. Second, 

turbidity may be correlated to the number concentration of primary 

particles remaining, but it still does not measure the number 

concentration and size distribution of the remaining particles. 

Let's consider these criticisms. Flocculatlon, by itself, is an 

extremely complex process, and there is large uncertainty in scaling 

bench scale results up to design scale. The same is true of both 

sedimentation and filtration. In performing basic research it is 
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Important that the indicators used to measure flocculation efficiency 

not be tied to a second complex process with potentially unmeasurable 

biases. For instance, in sedimentation, flocculation will occur due 

to differential settling, and floe with a dense structure will be 

removed in preference to floe with an open structure. Both of these 

phenomena will tend to bias the results, but neither of them is 

easily quantified. 

It is well known that the particles which are very small and very 

large relative to the wavelength of light, are less efficient at 

scattering light than particles which are close in size to the 

wavelength of light (Friedlander, 1977). Since the turbidity measure 

is based on light scattered at 90 degrees, turbidity measurements 

will also exhibit this same bias. If the particle count is high the 

raw water particle concentration is usually well correlated with 

turbidity. However, turbidity is not sensitive enough to shifts in 

the particle size distribution to be a good measure of flocculation 

efficiency. Thus, if one is attempting to compare the efficiency of 

a number of impellers using turbidity as a parameter, it has been 

necessary to measure settled or filtered turbidity. It would be 

better to compare shifts in the particle size distribution than to 

compare shifts in turbidity. If one is to understand what aspects of 

an impellers geometry are important in flocculation, it is important 

to be able to track the changes in the particle size distribution 

induced by the Impellers. As stated previously, the structure of the 
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flow field and the size of the particles in the flow field interact. 

Thus, different impellers may be optimal under different conditions. 

It is also very likely that the mode of flocculation (i.e., 

mechanism) will influence the measured efficiency of the impellers. 

In the adsorption/destabilization mode (A/D), the primary particles 

are destabilized, and begin to flocculate during rapid mixing, but 

the size distribution of the particles does not change appreciably 

prior to the flocculation basin. In the sweep floe mode, a chemical 

precipitate is formed during rapid mix. This precipitate is 

generally much larger than the primary particles which were 

originally present. This large precipitate then proceeds to sweep up 

the primary particles. It is easy to see that an impeller which is 

optimal in one situation may not be optimal in another. 

The impeller geometry and flocculation mode will also impact the floe 

structure, and floe structure affects the ability of filtration and 

sedimentation to effectively remove the particles. Thus, rather than 

simply speaking of flocculation efficiency, one should perhaps speak 

of flocculation efficiency with respect to flocculation mode and the 

succeeding unit process. 

Because of the difficulty in interpreting and comparing the 

literature results, each of the studies will be presented in 
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chronological order. Major trends will be discussed, but no real 

attempt will be made to fully integrate this literature. 

Drobny (1963) Compared 30 variations of an impeller similar to the 

turbine used in this work. Alum floe nucleated by a small amount of 

Fullers earth was flocculated at a pH between 6 and 7. The alum dose 

used in forming the floe was not reported, but based on the 

information presented, the flocculation mode was probably sweep floe. 

Flocculation efficiency was based on relative turbidity, i.e., the 

increase in turbidity due to alum precipitation during flocculation. 

The comparison was based on a constant power per unit volume for all 

of the impellers. Drobny concluded: 

"It appears definite that the flocculation process may be 
made more efficient with respect to power input by simple 
variations in the paddle design." 

Argaman and Kaufman (1968) studied the two impeller designs shown in 

Figure 27, namely a turbine impeller and a stake and stator impeller. 

Note that these same impellers were selected for use in the present 

work because they appear to represent the extremes of practical 

impeller geometry. Argaman and Kaufman flocculated a 25 mg/1 

kaolinite suspension using 25 mg/1 of alum as Al2(S0^)3*14H20. Their 

work was performed at an unspecified pH, but it is assumed, based on 

the dose, that they were utilizing the sweep floe mode. The 

flocculation efficiency was based on a type of relative turbidity. A 

sample of the flocculated material was taken and shaken vigorously. 
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It was assumed that this shaking would reduce the floe to primary 

particles. The turbidity of the shaken sample was measured, and 

assumed to represent the original primary particle concentrations. 

Turbidity was then measured on a second sample which had been settled 

for 30 minutes prior to being shaken. The percent difference between 

these two was considered the reduction in primary particles. It is 

very likely that the assumption that the floe were reduced to primary 

particles by shaking was in serious error. It is expected, however, 

that the errors Induced by this faulty assumption did not invalidate 

their conclusions with respect to impeller efficiency. They 

concluded that, in the region in which they were working, the 

performance of the stake and stator impeller was superior to the 

turbine Impeller. The work was performed at approximately 21 "C. 

Patwardham and Mirajgaonkar (1970) compared 6 paddle geometries, 

flocculating clay using alum at a pH of 7.6. Based on this pH it is 

probable that the work was performed in the sweep floe mode. Figure 

28 shows the basic Impeller geometry, experimental conditions, and 

results. It is not explicitly stated, but it appears that settled 

turbidity was used as the measure of floeculation efficiency. The 

Impeller geometries were compared at constant Impeller speed. The 

conclusion was again drawn that there was a geometry effect. 

Bhole and Limaye (1977) conducted experiments with 5 vessel 

geometries and 5 Impeller geometries. The experiments were conducted 
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flocculating 25 to 100 mg/l of Fullers earth with 1 to 20 mg/1 of 

alum at a pH of 7. This work may have been in either the sweep floe 

mode or in À/D mode, but it was probably in the A/D region. Again, 

the exact measure of flocculation efficiency was not stated. It 

appears that settled turbidity divided by initial turbidity was used 

as the measure of flocculation efficiency. Again, it was concluded 

that geometry had a significant impact. Shapes D and G from Figure 

29 gave optimal removal. 

Oldshue (1983) and Oldshue and Hady (1978, 1979) report on a plant 

scale comparison of an axial flow impeller and a dangling plate 

flocculator. This work was performed at 4 degrees Celsius. A low 

turbidity (8 NTU) lake water was flocculated with an unspecified 

amount of alum and caustic. The initial raw water pH was 5.1 to 5.4. 

It is assumed that the caustic was used to raise the pH and provide 

some alkalinity, but no information is given by the author with 

regard to these details. However, with an initial turbidity of 8 NTU 

it is likely that the flocculation was in the sweep floe mode. The 

author concluded that when compared to the dangling plate flocculator 

the axial flow Impeller gave the same flocculation with less energy 

input. 

Some preliminary comparisons were also made at a bench scale 

involving a rake, a Rushton impeller, and an axial flow impeller. In 

the bench scale portion of the work, 5 minutes of flocculation was 
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found sufficient for removal of color and turbidity. This short time 

requirement would indicate the sweep floe mode. Removal of turbidity 

and color were used as indicators of flocculation efficiency. The 

following conclusions were drawn. The axial flow impeller gave 

optimal flocculation at a lower energy. The rake performed as well 

as the axial flow, but the energy requirements were higher. The 

Rushton impeller was less energy efficient than either the axial flow 

impeller or the rake, and it did not flocculate as well as either of 

the other geometries at their respective optimum energy levels. It 

should be noted that data collected in this work was extremely 

sketchy, especially when one considers the sweeping conclusions 

drawn. Inspite of this weakness, the data indicates a geometry 

effect. 

Ives (1984), working in a 1 liter reactor, compared the 9 Impeller 

geometries shown in Figure 30. A 16.7 mg/1 kaollnite suspension was 

flocculated with Al2(S0^)g*16H20 at an unspecified pH. Based on the 

information provided it is likely that the work was performed in the 

sweep floe mode. The author states that all of the Impellers were 

tested under the same conditions. However, it is not clear what this 

means. It could mean constant G, constant e, or constant rpm. Under 

the circumstances it is assumed that the author meant constant G. 

Two measures of flocculation efficiency were used to evaluate the 9 

impellers; settled turbidity and the filtration number. The settled 

turbidity was based on a sample drawn from 30 mm below the surface 10 
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minutes after the paddle rotation had ceased. The fllterablllty 

number Is equal to: 

The lower the fllterablllty number the better the performance. An 

optimum coagulant dosage was determined using each test parameter; 

settled turbidity, and fllterablllty number. The 9 Impellers were 

then compared using the optimum dosage for the parameter being used 

In measuring efficiency. Figures 31 and 32 show the results. There 

are a number of things to be noted In comparing the results: 

o The only Impeller which showed a consistent performance, 
was the axial flow Impeller (propeller). It was 
consistently bad. 

There appear to be different geometry effects, but there 
are so many variables which are either unknown (coagulant 
dose, pH, Ions In solution, mixing Intensity), or changing 
at the same time that it is Impossible to deduce why the 
Impellers behave differently. 
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Ives concluded that, In the alum/clay/tap water system flocculated In 

a jar tester, G is not a sufficient criterion to choose among several 

impeller designs. 

It Is seen from the foregoing references that Impeller geometry does 

affect flocculatlon. It is not clear at this point how the mode of 

flocculation, the flocculatlon efficiency measurement parameter, and 

the size of the particles present all interact in the selection of an 

optimal impeller geometry for a given system. We may speculate on 

this later based on the data collected in this study. 

One last thing before we leave the general topic of turbulence. 

Let's look at 6, the root-mean-square-velocity-gradient, and its 

usefulness, or lack of usefulness, in flocculatlon. 

G was developed in 1943 by Camp and Stein, to address a specific 

need. Engineers needed a means of quantifying the work which could 

be performed by a turbulent flow field. It is Interesting that, in a 

practical sense, no one has yet proposed a usable parameter which is 

easily measurable, and does a better Job than G. As a predictor of 

the work done by a turbulent flow field G is still a "good" parameter 

for design. G is used in sanitary engineering for many things 

Including scale up of jar test results to full scale plant operation, 

estimation of optimal operating conditions in plant start-up, and as 

a means of correcting energy input into the flocculatlon process for 
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changes In water temperature. G is frequently seen in the following 

form: 

" -\|fv- ' -\JT^ 

P - power input 

V - unit volume 

/i - liquid viscosity. 

e - energy input/unit mass of water 

1/ - kinematic viscosity 

G has shown itself to be a useful tool. The real question here is 

not with regard to the usefulness of G. The real question is, what 

are the limitations of G. Is it a real measure of the physical 

situation in the reactor, or is it simply correlated to what is 

happening in the reactor. It is necessary to establish the 

limitations of G if we are to use it intelligently. 

From Camp and Stein (1943), it is seen that the total work done by 

fluid shear per unit volume per unit time is equal to e. £ can be 

expressed in terms of G using the following relationship: 

e - u*G^ 
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G — absolute velocity gradient 

1/ - kinematic viscosity 

This relationship is fundamentally sound, there are no major 

theoretical flaws in the development of the relationship between £ 

and G at a point (vanlshingly small unit volume) in the fluid flow. 

Unfortunately it is not convenient to measure G at a point. Camp and 

Stein (1943) proceeded from this point to develop a relationship 

between and G^. is the mean value of the work input per unit 

mass of water per unit time, where is calculated by dividing the 

total work input by the total mass of water in the reactor. G^ is 

the root mean square velocity gradient. It was In going from the 

relationship between G and e at a point, to the relationship in the 

entire reactor that Camp and Stein stretched their assumptions to the 

point of breaking them. They made a number of theoretical errors, as 

pointed out by Clark (1985b) and Saatcl (1987). Fortunately, these 

errors, while academically interesting, appear to have little real 

bearing on the usefulness of G as a practical tool. The flaw which 

Is of most concern, perhaps an unavoidable flaw, is the assumption 

that the velocity gradient throughout the vessel is homogeneous, 

which corresponds to an assumption the e is also homogeneous 

throughout the vessel. We have already seen in our discussion of 

turbulence that e varies significantly in a stirred tank, and that 

the small scale turbulence variations are Important to localized 
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transport. A number of researchers have voiced concern over the non-

homogeneity of e, and the effect this has on the usefulness of G. 

Patwardham and Mlrajgaonkar (1970) concluded that Is Inadequate 

for deciding upon the best flow pattern to achieve effective 

flocculatlon, and that G^ needed to be supplemented by other suitable 

design criteria. He went on to suggest that the Impeller which 

provided the highest pumping rate for the same G^ seemed to be more 

beneficial. From this point on, unless stated otherwise, G will 

refer to G^,. 

Argaman and Kaufman (1968) noted that the performance differences 

they observed in comparing two paddle types was sufficient evidence 

that G alone was not adequate for characterizing the flow field. The 

theory they developed identified u^ and its spectrum as the only 

energy parameters directly effecting the flocculatlon process. 

Oldshue and Mady (1979) state that the G factor is Inadequate, 

because the shear rate distribution in the tank is not constant from 

Impeller geometry to impeller geometry, at the same G value. The G 

factor in Oldshue's opinion "Is too simplistic to be the single 

correlating parameter over a wide variety of mixing variables". 

There have been a number of papers in the past eight years suggesting 

alternatives to G. Cleasby (1984), Clark (1985b), and Glasgow and 
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Kim (1986) all voiced specific criticisms of G. Cleasby (1984) 

suggested the use of as a more appropriate energy parameter. It 

Is suggested, however, that this quantity will be subject to the same 

spatial variation problems which plaque G. Clark (1985b) and Glasgow 

and Kim (1986) suggest that the flow field variability might be 

overcome by compartmentalizing the reactor, and this has In fact been 

done (Koh, 1984). Compartmentalizing the reactor Implies a need to 

know the detailed flow field In the mixed vessel. Some researchers 

such as Glasgow (1985) feel quite strongly about this matter: 

"The Inhomogenelty of turbulence In stirred baffled tanks and 
flocculatlon basins renders the velocity gradient, G, 
meaningless. It should be mandatory that all research In 
flocculatlon Incorporate measurement of the spatial variation 
of the dissipation rate as part of the experimental plan" 

Glasgow, probably goes too far here, since, although It has been 

shown that Impeller geometry effects are measurable, It has not been 

shown that they are an overriding practical concern. 

This brings us back to a comment made some pages ago. G is a useful 

tool, but we must realize its limitations. From a design and 

operations point of view there is nothing available which can replace 

G at this time. From a research point of view, we must be careful 

not to expect more of G than it has to offer. Any modelling or data 

interpretation based solely on G will have built Into it all of the 

errors Inherent in the parameter G because of the spatial variation 

of e in the reactor. 
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Coagulants 

So far we have considered the following major aspects of the 

flocculating system: 

o the liquid phase (water), 

o the solid phase (kaollnlte primary particles), 

o the attractive-repulsive forces effecting particle-particle 
Interactions In a liquid medium, 

o the particle transport mechanism In the liquid 
(turbulence). 

In this section we will consider the last major component of this 

system which needs to be discussed, the coagulants which destabilize 

the particles. 

A coagulant is a substance which is added to a colloidal suspension 

to cause or enhance the destabilization of the particles in the 

suspension, so that the particles may be flocculated. There are two 

major classes of primary coagulants being used in the water treatment 

Industry: metal salts, and organic polymers. 

The metal salts, particularly aluminum sulfate (alum), are the most 

commonly used coagulants (Srlcharoenchaikit and Letterman, 1987). 

Synthetic organic catlonic polymers are gaining popularity, and will 

very likely continue to do so as we come to understand them better. 
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In the following pages the two classes of coagulants will be 

considered individually, first the metal salts and then the polymers. 

Metal ççagvlante 

Metal coagulants are available in a number of chemical forms, all of 

which are salts of aluminum or iron. The following are the metal 

coagulants In common use: 

o aluminum sulfate or alum (Al2(S0/^)3*NH20 

o polyalumlnum chloride (Al(OH)̂ Gly) 

o ferric sulfate (Fe2(SO^)3) 

o ferrous sulfate (FeSO^) 

o ferric chloride (FeClg) 

Most of the discussion will be centered around alum, since the 

majority of the work in this project was performed using alum. 

Ferric sulfate was used for a lesser portion of the work, and it will 

also be discussed. 

It is interesting to note that many researchers, in discussing metal 

salts, deal with aluminum and iron salts simultaneously, because 

their chemistry is similar. This format will be also followed here, 

but along with the similarities there are some distinct differences. 

These differences are, perhaps, very Important, and an effort will be 

made to highlight the differences. The general mechanism of particle 
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destablllzation are the same for both metals. However, because of 

differences In solution speclatlon, electron structure, and time 

scales In reaction kinetics, the two types of salts may respond 

differently to temperature changes. 

Figures 33 and 34 represent turbidity coagulation diagrams for 

aluminum and Iron respectively (Amlrtharajah, 1984; and Johnson and 

Amlrtharajah, 1983). The basic coagulation diagram Is simply a 

solubility diagram for the particular metal system. Super-Imposed on 

the solubility diagram are empirically determined regions of 

flocculatlon. We will discuss these figures In detail a little 

later, but they are presented at this point so the reader has an 

overall mental picture of the relationship between metal salt 

chemistry and flocculatlon. Before we discuss the details of Figures 

33 and 34, It Is Important to consider the nature of the coagulant. 

The character of the coagulants and the changes that take place will 

be discussed starting from the coagulant In the stock solution tank, 

and following It through until It precipitates and/or adsorbs on the 

particle surface. 

Figures 35, 36, and 37 (O'Mella, 1978) are speclatlon curves for the 

metal salts and water In equilibrium. Figure 35 represents aluminum 

sulfate, and Figure 36 and 37 represent ferric chloride, and ferric 

sulfate. The percent of metal speclatlon is read on the left 

vertical axis, and the pH is read on the right vertical axis. There 
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toOH.{ 

Figure 34. The ferric chloride coagulation diagram for turbidity 
removal 
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are two Important features to note on these two figures. First the 

metal speciation is very sensitive to the concentration of the stock 

solution. Second the speciation for the aluminum sulfate is quite 

different from the speciation for the ferric sulfate. O'Helia notes 

that the stock solution of 1 mg/mL is commonly used in laboratory jar 

testing, and corresponds to a pAl^ of 2.52, and a pFe(ZIZ)^ of 2.31. 

This concentration will be used to contrast some of the speciation 

differences between these two metals. For the alum the pAlj of 2.52 

corresponds to the peak of the Al(H20)g*3 curve, and the Al(H20)g+3 

represents 75 percent of the aluminum species. If the concentration 

is increased the sulfate complexes increase, and if the concentration 

is decreased the hydroxo complexes increase. At the same metal 

concentration, less than 2 percent of the Fe(III) present, is present 

as the free aquometal ions [Fe(H20)g+3]. Table 7 compares the 

speciation of the three coagulants when the concentration is 1 mg/mL. 

The information in Table 7 is taken from Figures 35, 36, and 37. 

O'Melia (1978) in discussing the iron salts presented in Table 7 

notes that, it is plausible that identical concentrations of iron 

stock solutions may produce different destabilizing species. It 

appears that this is even more likely when comparing the aluminum 

with the iron. 
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Table 7. Speclatlon comparison for 1 mg/mL Fe and Al solutions, 
based on percent of total 

Coagulant Al2(SO/^)3 F62(S0^)2 FeClg 

Species percent of total present 

Free aqua metal ion 
M(H20)g+3 

85 2 18 

Sulfate Complexes or 
Chloro Complexes 

16 47 3 

Hydroxo Complexes 9 21 56 

Solid M(0H)3 30 23 

The speclatlon of the metal salts In solution is not only 

concentration dependent, it is also pH dependent. Figure 38 and 39 

(Baes and Mesmer, 1976) demonstrate the complexity of the metal 

speclatlon with regard to both concentration and pH. The dashed 

lines in the figure represent the percent of metal present as a 

specific species. The number label in the lines (x,y) indicates the 

number of aluminum atoms in the species (x), and the number of 

hydroxides present in the species (y). Similar information on the 

pH dependence of aluminum speclatlon is shown in Figure 40 ( Hayden 

and Rubin, 1974). The examples presented in these figures have been 

calculated and are based on an assumption of equilibrium in pure 

water. These figures are probably not too unrealistic. Weber and 

Stumm (1963) note that under the conditions normally found In 
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most natural waters, the solubility of Fe (III) and Al (III) are 

controlled by the solubility products of the corresponding 

hydroxides. 

Host alum stock solutions will be fairly concentrated and have a pH 

between three and four. Consider Figure 39 (part a) which represents 

an aluminum concentration equal to 59.4 g/1 as alum (with a molecular 

weight of 594 g/mole). From Figure 35, the equilibrium pH under 

these conditions would be about 3.3. This is the pH in the 

coagulant. The coagulant will be Injected into the suspension to be 

coagulated, rapid mixed for a relatively short time (0.5-5 minutes), 

and then slow mixed or flocculated for a longer period of time (10-

45 minutes). If a relatively high dosage of coagulant is injected, 

the final equilibrium speciatlon in the rapid mix tank may look 

similar to that shown in Figure 40, which represents an alum dosage 

of 294 mg/1. If the dosage is low the final speciatlon may be 

similar to the speciatlon shown in Figure 39 (part b), which 

represents 5.94 mg/1 as alum (with a molecular weight of 594 g/mole). 

Describing these as the final equilibrium speciatlon assumes of 

course that equilibrium occurs before any of the material is adsorbed 

out of the system by the solids present. As the coagulant is 

injected into the suspension to be destabilized, the chemical 

speciatlon will be undergoing changes as it responds to the altering 

of both its pH and concentration. The rate at which the coagulant 

comes to its new equilibrium state and the rate at which the material 
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Is adsorbed out of solution at the solid/liquid Interfaces are 

obviously going to be Interconnected. At this point we will ignore 

the adsorption time scales and only consider the equilibrium 

chemistry, but later we will return to the effect of adsorption rate 

versus precipitation rate. 

Aqueous metal species in general are associated with water and in 

order for the metal to interact with another chemical species, the 

reactive species must penetrate the water sheath associated with the 

metal molecule. This is an area where the chemistry of aluminum and 

iron are quite different. Iron (III) is a d-block element. 

Aluminum, on the other hand, is an sp-block element. As a result, 

their electron structure is quite different, causing iron to undergo 

associative solvent exchange, while aluminum undergoes dissociative 

solvent exchange. That is, the iron (III) is capable of temporarily 

associating with an additional molecule, while the water molecule 

which is leaving finds its way out. Aluminum (III) is not capable of 

this, and as a result the water being displaced must leave before the 

aluminum (III) can interact with another molecule. The result of 

this is illustrated in Figure 41 (Burgess, 1988). We see from the 

right hand axis that the mean residence time for a water molecule in 

the primary hydration shell for iron (III) is in the /usee range, 

while for aluminum (III) it is in the sec range. Based on these time 

scales it appears reasonable that the iron (III) will come to 

equilibrium much quicker than aluminum (III). 
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Another characteristic of metal salt solutions which must be 

considered in diluting a stock solution is the effect of aging on 

speciation. Hong-Xiao (1987a), Stumm and Morgan (1962), and Johnson 

and Amithirajah (1983) note the aging effect on iron solutions. 

Hayden and Rubin (1974), Stumm and Morgan (1962), Matijevic and Tezak 

(1953), John Gregory (1978), Sullivan and Singly (1968) all discuss 

aging in alum solutions. Matijevic and Tezak (1953), and Sulivan and 

Singly (1968) both state that aging effects are more pronounced in 

solutions of lower concentration. If the concentration is high 

enough the pH will be lowered so that only the free aqua-metal ions 

are in existence. Thus, aging is mainly a concern in the more dilute 

solutions which will be used directly to dose the colloidal 

suspension. From Hayden's work (1974), the changes in the aluminum 

speciation occur rapidly for the first hour, and after 24 hours the 

change is gradual. From this one would conclude that it may be 

easier to obtain consistent results if the dilute stock solution is 

aged a few hours. 

In the next few paragraphs we will return to Figures 33 and 34, and 

explore the coagulation diagrams. It is hoped that this discussion 

will illustrate the utility of these diagrams in understanding the 

flocculation process, i.e., how the system will react at different 

coagulant dosages and pH conditions. Two examples will be presented 

with the intent of demonstrating; 
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o the complexity of the metal salt system, and 

o the difference between the adsorptlon/destablllzatlon and 
sweep floe mechanism, and 

o the importance of coagulant precipitation kinetics in 
determining the flocculation mode, and thus, the potential 
importance of temperature. 

For the sake of simplicity only alum will be considered, and the 

speciation presented in Figure 40 will be assumed to apply. The 

first example will be a hi^ dose of alum (30 mg/1 as alum). This is 

an optimal sweep floe dosage. The second example will be a low 

dosage (5 mg/1 as alum), typical of A/D flocculation. 

Recall the following information from Figure 40. In the stock alum 

solution the pH is less than four, so all of the aluminum is in the 

Al+3(H20)g state. It is only after the coagulant is injected into 

the raw water that the pH is raised and the species present start to 

change. There is only a narrow range, between pH of 4.5 to 5.2, 

where the complex aluminum polymers exist. From pH of 5.2 to 9 the 

aluminum species exist predominately as A1(0H)3 precipitate (Hayden, 

1974). 

Now let's consider what happens in Figure 33 if a dose of 30 mg/1 is 

selected, and the pH is changed over a range of 4 to 9. Remember, 

these conditions represent the final coagulant concentration and pH 

in the reactor. As we start at a pH of 4 we are outside the 
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precipitation boundary In a region where all of the aluminum exists 

In a soluble Al*^ state. At a pH of 4.5 two things happen: 

o the solubility limit is reached, 

o the soluble species are dominated by the hydrolyzed 
polymeric aluminum species (Alj^OHy)™; (Alg(OH)2o* , as 
seen in Figure 40) 

The hydrolyzed polymeric species actually becomes the dominant 

species just prior to precipitation, and are only present in 

appreciable amounts over a narrow pH range (Hayden and Rubin, 1974). 

The narrow pH range in which these polymeric species dominate, 

appears to coincide with the first charge neutralization range in 

Figure 33. Small hydroxy complexes are reasonably soluble and easily 

adsorbed on to the colloid particles, making these complexes 

extremely effective coagulants (Eilbeck and Mattock, 1987). 

As we continue across the diagram to a pH of 5, the hydrolyzed 

polymeric species disappear, and are replaced by Al(OH)g as the 

dominant species. This is the restablllzatlon range. The surface 

charge of the solid AlCOH)^ is pH dependent (Stumm and Morgan, 1981). 

At a low pH it is very positive, and as the pH increases the, the 

charge decreases. At the zero point of charge (ZFC), or the iso

electric point, the surface charge of the aluminum hydroxide 

precipitate is zero. Table 8 list representative values for the ZFC 

for the A1(0H)3 and Fe(0H)3 systems. 
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Table 8. Typical pH values resulting in the zero point of 
charge (ZPC) for hydroxide precipitates 

Aluminum 
Hydroxide 

Ferric 
Hydroxide 

Source 

6.7 
8 .0  
6 . 8  

Stunm and Morgan, 1962 
O'Melia, 1978 
Hong-Xiao and Stumm, 1987a 
Hayden and Rubin, 1974 
Letterman and Vanderbrook, 1983 
Amitharajah, 1984 
Hall, 1965 

7.0 
9.0 
8 .0  
8 . 0  

In the restabilization area the surface charge on the precipitate is 

so high that the particles with adsorbed precipitate experience 

charge reversal, and become positively charged. It is noted that if 

the primary particle concentration is hi^ enough, the 

restabilization zone may disappear entirely, because there will not 

be enough precipitate to reverse the original surface charge. 

As the pH is raised the surface charge of the aluminum precipitate 

becomes lower and lower, and somewhere near pH of 6.0, the typical 

water is once more destabilized and will coagulate. Figure 42 (Hall, 

1965) and Figure 43 (Hong-Xia and Stumm, 1987a) illustrate the zeta 

potential-pH relationship for alum and iron respectively. Figure 44 

(Trace Inorganic Substances Committee, 1988) shows the anion 

adsorbtion-pH relationship for aluminum hydroxide and iron hydroxide. 
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Again, note how sensitive the surface chemistry of these hydroxide 

precipitates is to shifts in pH. At a pH of 6.5 the 

adsorptlon/destablllzation mechanism ceases to dominate the 

flocculation and sweep floe becomes the dominant mechanism. In sweep 

floe large quantities of aluminum hydroxide precipitate are formed. 

These precipitates sweep up the primary particles as they move 

through the water. 

Interaction between the two mechanisms and the metal salts is shown 

schematically in Figure 45 (Dentel, 1987). Insist into this shift 

from one mechanism to another can be gained by considering the time 

scales involved in the various process steps (See Table 9, page 123), 

and the change in surface charge with pH. 

When the pH is low enough so that adsorption followed by 

precipitation on the surface is favored, there will not be sufficient 

aluminum in solution to form the large quantities of precipitate 

needed for sweep floe to occur. However, as the adsorption step 

becomes less and less favorable, the soluble aluminum is in solution 

long enough for the sweep floe to form. Sweep floe dominates from pH 

of 6.5 to 8.4. At a pH of 8.4 the hydroxide species once more become 

more soluble. 
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Table 9. Reaction type versus time scale (Amlrtharajah, 
1987) 

Reaction Time Scale (seconds) 

A1 (III) monomer adsorption <0.1 

Al (III) polymer formation 0.1 to 1 
and adsorption 

Formation of sweep floe aluminum 1 to 7 
hydroxide precipitate 

Once again consider Figure 33, and assume a coagulant dose of 5 mg/1 

as alum. This is 1/6th of the dose discussed on the prior pages, and 

we will see a few changes. The first change evident in Figure 33 at 

the lower coagulant dose is that all of the regions previously 

mentioned shift to the right. The other significant difference is 

the disappearance of the sweep floe region. With the low dose of 

alum the A/D mechanism will be effective, but there is not enough 

aluminum added to the system to form a good sweep floe even if the pH 

is favorable. 

Similar reasoning can be applied to the iron (III) system shown in 

Figure 34 (Johnson and Amlrtharajah, 1984). There is evidence in the 

literature that sweep floe formed with iron (III) is denser and 

perhaps stronger than the floe formed with aluminum (III) (Morris, 

1983; Dann, 1988). 
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The chemical makeup of the dilution water in which colloidal solids 

are suspended can also have a significant Impact on the effectiveness 

of the metal salt coagulant. Letterman and Vanderbrook (1983) showed 

rather dramatically the Importance of pH in the flocculation process, 

by flocculating a colloid suspension at a pH of 6 and 8 with alum. 

At pH - 8, the aluminum concentration required for charge 

neutralization was almost lOx greater than the concentration needed 

at a pH — 6. 

Because the pH of the system is Important it is desirable to work 

with a buffered system in flocculation research. Certain ions in 

solution either enhance or inhibit flocculation, thus it is important 

that a buffer be selected which does not inhibit flocculation. 

An example will demonstrate the importance of the buffer. If Ames, 

Iowa tap water is allowed to sit overnight in an open beaker the 

final pH will be approximately 8.0. If 15 mg/1 of alum is added to 

the unbuffered tap water, the pH will drop to 6.7. From Figure 33 we 

see this pH shift is enough to move from the sweep floe region to the 

A/D region. If one Intends to work in the A/D region, it is 

obviously best to control the system so that the entire experiment 

takes place in that region. From Figure 33, one can see that the A/D 

region is very close to a pH of 7. This immediately suggests the 

carbonate system as the buffer of choice since its buffer intensity 
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shows a peak between pH 5 to 8. Work by Miller (1925) and Letterman 

et al. (1979) Indicate that adding a carbonate buffer to the system 

will not only stabilize the pH, but will broaden the window for good 

flocculatlon. In addition, Letterman et al. (1979), In reporting a 

frequency distribution for anions In natural waters, lists the 

carbonate concentration of an average water as 200 mg/1. This makes 

the carbonate buffer particularly attractive since It tends to mimic 

many commonly found natural waters. 

The one other multivalent anion which Is present In significant 

quantities In the water used In this study Is sulfate. In general, 

when the concentration of sulfate In the system Is low, the pH and 

aluminum concentration which yield charge neutralization are narrow. 

The effect of the sulfate anion appears to be similar to the effect 

of the carbonate anion, but the enhancement Is more pronounced. The 

effects of the sulfate anion have been documented by many researchers 

(Miller, 1925; Letterman et al., 1983 and 1979; Packham, 1965; Hayden 

and Rubin, 1974; Srlcharoenchalklt and Letterman, 1987; Dentel and 

Gossett, 1988; Hahn and Stumm, 1968a and 1968b; and Snodgrass, Clark 

and O'Mella, 1982). This work has uniformly indicated that the 

presence of the sulfate ion broadens the pH range and coagulant dose 

over which the A/D mechanism is effective. The work by Letterman et 

al. (1983) Indicated that the sulfate concentration had two effects. 

First, it widened the window of optimal coagulation, and Improved 

the residual turbidity which was achievable. Second, the increased 
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sulfate stabilized the electrophoretic mobility at very close to zero 

after the zero point of charge had been reached. 

It is noted that the anion effect is likely to be unimportant in the 

sweep floe region, since we are dealing with the enmeshment of the 

primary particles in precipitate. Letterman et al. (1982) confirms 

this by stating that the critical anion concentration becomes 

negligible, and the restabilization region disappears above a pH of 

7.5. In the pH range between 4.5 and 7.5 the anion concentration 

appears to have a significant impact on the efficiency of alum as a 

coagulant. It is in the region where charge reversal is most likely 

that the anion effect is most noticeable. 

Letterman et al. (1982) explain the action of the anion effect based 

on modification of the hydroxide precipitate attached to the 

particles surface sites. The sulfate complexes with the aluminum 

hydroxide and reduces - the charge on the hydroxide. The following 

equations have been suggested for this process: 

zAlOHg + OH' AlOH + HgO 

=A10H + OH' -» A10'+ HgO 

and 

5AIOH + SO^ 2 ̂  A1S0^+ OH" 

2{=A10H) + SO^ ̂  AlgSO^f 20H" 
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The three parallel bars to the left of the A1 atoms Indicate a bond 

with a surface site. It is seen from these reactions that increasing 

the pH, or the sulfate concentration, Increases the number of neutral 

and negative surface groups, which decreases the charge on the 

aluminum hydroxide surface. Keep this pH effect in mind, because it 

will come up again when we discuss temperature effects. Either low 

pH values or small amounts of adsorbable anion (sulfate) favors 

highly positive precipitate. This makes the precipitate very 

effective at neutralizing the negative charge on the clay, but also 

increases the possibility of restablllzing the suspension if 

overdosed. 

It is unfortunate that the literature cited earlier for the 

bicarbonate anion, did not contain any electrophoretlc mobility 

versus alum dose Information. Without this information it is 

difficult to draw any conclusion with regard to the similarity 

between the mechanism in the sulfate system and the mechanism in the 

carbonate system. Letterman et al. (1982) does give Information on 

the nitrate anion, and it appears to behave as the sulfate anion 

does, although it is less effective by a factor of 1000 on a molar 

basis. Letterman notes that the nitrate ion, in addition to having a 

lower charge, seems to have a lower affinity for the hydroxide 

precipitate. It seems reasonable that the same may be true of the 

bicarbonate anion. Letterman et al. (1979) states that the 

bicarbonate anion has 6 times the Impact on turbidity removal that 
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nitrate does. This may indicate that the bicarbonate has a lower 

affinity for the hydroxide than the sulfate, but a higher affinity 

than the nitrate. He also notes that the effects of the sulfate and 

bicarbonate are not additive. 

There has been limited work in which the investigators have dealt 

specifically with the impact of temperature on the flocculation 

process. The work which has been done using metal salts will be 

discussed here. 

Liepold (1934) used alum, at pH of 8, to flocculate Lake Michigan 

water with turbidities in the range of 12 to 20 Jackson Turbidity 

Units (JTU). He used an alum dose of 17 mg/1 at temperatures of 2.2, 

7.2, 12.8, 18.3, and 24 "C. Leipold noted "No preventative or 

retarding effect on alum floe formation in 30 minutes of mixing". At 

the high temperature condition, the flocculation conditions reported 

here will be in the optimal sweep floe range. Assume the 

flocculation regions remain fixed relative to the boundaries of the 

solubility diagram, and that the diagram shifts with temperature as 

shown in Figure 46 (Dempsey, 1987). Based on these assumptions the 

flocculation at pH of 8 and 17 mg/1 of alum will still be In sweep 

floe at a temperature of 2.2 *G. 

Velze (1934) worked with alum coagulating a natural colored water in 

Northeastern New Jersey. The water contained 34-38 ppm color. The 
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alum dose was varied from 10.9 to 47 mg/1 as alum, and the pH for 

most of the work was between 5 and 7. Velz observed some very 

interesting things. First, if the pH was held constant, the minimum 

alum dose to achieve good color removal dropped as the temperature 

dropped. The summer dose was 1.6 to 2.2 times as great as the winter 

dose. Second, if the dose was held constant and the pH was adjusted 

for optimal color removal, the detrimental effects of temperature 

could be practically eliminated. At 20-25 "C the optimum pH is 5.8, 

while at 8-14 *C, the optimum pH is 6.7. This represents a 0.9 pH 

unit shift over 11.5 'C. It should be noted that this phenomena was 

only observed when the minimum economical dose was used. As the dose 

was increased above this minimum, the effect of temperature 

disappeared. For a high surface area/volume system, like color, 

flocculation was probably occurring in the A/D flocculation region. 

Camp et al. (1940) set out to reconcile the apparent contradictions 

between Velz's (1934) results, Leipolds (1934) results, and the 

experience of plant operators flocculating particulates in cold 

water. Camp et al. assumed that iron and alum would behave 

identically, and elected to use ferric sulfate instead of alum. At 

that time it was easier to measure the residual iron than the 

residual aluminum. Ferric sulfate doses of 2, 3.15, 4.3, and 5.7 

mg/1 as Fe (9.1 to 25.8 mg/1 as ferric sulfate) were applied to 

particle free water. Each of the coagulant doses was tested at 1-5, 

15.1-15.3, and 28.3 "C. The shift in optimum pH seen by Velz using 

alum was once again seen with the iron, and as with Velz's work with 
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alum, the effect was most pronounced with the lowest dose. At doses 

of 5.7, 4.3, 3.15 mg/L as Fe, the optimum pH was 6.8, and did not 

shift a great deal as the temperature changed. However, at 2.0 mg/1 

as Fe, (9.1 mg.l as Fe(S0^)3) the shift was substantial. The optimum 

pH values at the various temperatures were: 

This represents a 0.33 pH unit shift over 24.7 "G. Significant, but 

much smaller than the shift seen with alum. Near pH-7, and with no 

particulate present In the system, the floe formed would be entirely 

sweep floe. 

Camp noted that many Investigators have shown that the time of 

formation of floe Increases rapidly with Increased variation In pH on 

either side of the optimum pH. Camp noted two other Interesting 

things. First, the rate at which the floe formed seemed nearly 

Independent of temperature. At the high dose, the floe started to 

form within 6 seconds at high temperature, and within 10 seconds at 

the low temperature. Camp measured the onset of floe formation by 

the disappearance of the tyndall effect. Second, all of the 

coagulant doses produced a better "quality" floe at high temperature, 

with little difference In floe "quality" between 15.3 and 3.6 ®C. 

The exact meaning of the word quality, as used in this context, was 

Temperature pH 

28.3 
15.3 
3.6 

7.0 
7.21 
7.33 
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not defined. However, It Is assumed that the author was referring to 

the appearant size of the floe. 

Hannah et al. (1967) used 20 to 130 mg/1 of alum (as alum), to 

flocculate 0.35 to 8.8 NTU water. Tests were performed at 0, 5, and 

15 *C. These researchers noted that the settling and filtration 

deteriorated as the temperature decreased, with the differences most 

pronounced at temperatures below 5 *G and high alum dosages. 

Unfortunately, no pH Information was given, so It Is Impossible to 

know what was going on In a mechanistic sense. The dosage range 

given Indicates probable sweep floe mechanism, but some of the data 

also Indicates a sensitivity to the amount of surface area present, 

which would lead one to suspect charge neutralization (I.e., A/D 

mechanism). Not knowing any pH or alkalinity data, It Is not 

possible to make much use of this data. It should also be noted that 

the authors apparently did not correct settling times for the change 

In liquid viscosity with temperature. This makes It Impossible to 

distinguish between a reduction In flocculatlon efficiency and a 

reduction In sedimentation velocity due to higher viscosity at cold 

temperatures. 

Hutchison and Foley (1974) treated a natural water containing 10-50 

FTU of turbidity, with 10 to 25 mg/1 of alum (as alum). The water 

was taken from the Great Lakes, probably Lake Huron. The study was 

prompted by the fact that the Port Elgin, Ontario water treatment 
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plant had severe after filter floe developement when flocculatlon 

times were less than 3.5 minutes and the filtration rate was 5.6 

gpm/ft^. Once again, the alkalinity and pH used in the study were 

not given. There is a hint that a pH of 7.3 was high, thus the 

entire study may have been in the A/D region, or it may have been in 

combination sweep floe and A/D region. There is no way to know 

without the pH information. The authors noted that at a temperature 

of 3.3 "C, 15 minutes of flocculatlon was sufficient to overcome all 

slow flocculatlon problems. 

It is interesting to note that slow flocculatlon problems have not 

been mentioned with respect to iron. Perhaps the problem is related 

to the ^2^ coordination with the metal ion (as shown in 

Figure 40), which we saw was much longer for aluminum than for iron. 

Treweek (1979) used a combination of 3 mg/1 as alum and 0.25 mg/1 of 

Cat-Floc T to treat a reservoir water. The turbidity of the 

reservoir water ranged from 1 to 3 NTU. The flocculatlon in this 

work was pretreatment for direct filtration, so the mixing intensity 

was relatively high (G - 100 sec'^) and the mixing duration was 

relatively short (15 minutes). The temperature was varied from 19 to 

4.5 "C, and no temperature effect was observed. Once again, no pH 

data was provided. It is obvious, from the alum dose, that the 

mechanism was either A/D, or a combination of the sweep floe and A/D 

mechanisms. However, without knowing the pH it is impossible to know 
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how far the aluminum hydroxide floe was from Its ZFC. If the 

aluminum hydroxide Is close to Its ZPC, It may be simply adding 

additional particles, and the polymer may be responsible for the 

destablllzatlon of the particles. If this Is the case, one would not 

expect to see a temperature effect due to the alum. 

Morris (1983) and Morris and Knocke (1984) Investigated the effect of 

temperature (1, 5, 23 *C) and primary particle concentration on the 

flocculatlon of kaollnlte with metal salts. Alum dosages of 0.01 to 

10 mg/1 as Al+3 (0.11 to 110 mg/1 as alum with 14 waters) were used 

at a pH of 7.0. Iron dosages of 0.01 to 10 mg/1 as Fe"*"^ (0.05 to 

48.3 mg/1 as FeCl3*6H20) were used at a pH of 8. The pH was not 

considered a variable in this study, but neither was an effort made 

to hold it constant through most of the study. The pH drop caused by 

the coagulant addition was typically less than 0.6 pH units. The 

water used was a buffered tap water with a minimum alkalinity of 50 

mg/1 as CaCOg. The tests were carried out in square mixing Jars 

(Gator Jars), on a Fhipps and Bird Jar test mixer. Each sample was 

treated as follows: 

1 minute rapid mix intensity unknown 

20 minute slow mix G - 40 sec'^ 

60 minute settling no temperature correction. 

The following conclusions of Interest came out of this work: 
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o A decrease in temperature had a significant adverse effect 
on the removal of turbidity. The effect was most severe 
with aluminum sulfate, but significant with ferric 
chloride. 

o The reduction in turbidity removal at low temperature was 
caused by a change in the floe characteristic. A reduction 
in the apparent floe size at the lower temperature was 
noted. 

o The low temperature conditions did not inhibit the rate of 
aluminum or ferric hydroxide precipitation. 

It is interesting that Morris and Knocke (1984) felt that these 

conclusions contradicted the results of Camp et al. (1940). However, 

if one reviews Camp's paper one finds substantial agreement. 

Morris (1983) and Morris and Knocke (1984) represents a substantial 

effort along the same line which the work reported herein, and as 

such deserves some additional comment. 

Morris and Knocke used settled turbidity to measure flocculation 

efficiency. Using settled turbidity as a measure of flocculation has 

inherent problems. These problems are compounded when, as in this 

case, the settling times are not corrected for the changes in water 

viscosity and density with temperature. Thus one must be very 

careful in interpreting the Jar test data presented in Morris's work. 

The authors also present particle counting data which needs to be 

considered carefully. The data were collected using a HIAC particle 
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counter with a 300 pm sensor. It is noted that none of the 20 "C 

samples, alum or iron, contained any floe larger than 50 /im. The 1 

"C sample flocculated with iron contained no floe larger than 40 fm, 

and those flocculated with alum contained no floe larger than 20-40 

Hm, depending on the sample. The text (Morris and Knocke, 1984), 

however, states: "Thus, iron appeared to function more efficiently 

under low temperature conditions, owing to the formation of large 

floes that settled more efficiently". This would lead one to believe 

that the authors could first, see the large floe, and then see visual 

differences in the floe. This is important because the resolution 

limit of the human eye is approximately 50 pm. It is suggested that 

the particle counting data the authors have reported are really more 

indicative of the strength of second level aggregates than it is of 

the size of the floe, because the floe are probably ruptured in the 

counting procedure. 

Morris and Knocke (1984) state: "Low-temperature conditions did not 

inhibit the rate of aluminum or ferric precipitation". Tliis is in 

agreement with other work which has been done, and may very well be 

true. However, the first sample that the authors analyzed was 

collected 1 minute after the coagulant was injected. Camp et al. 

(1940) indicated, based on the Tyndall effect, that the precipitation 

was substantially complete in the first 3-6 seconds. Moffett (1968) 

indicated that the reaction time for the alum in the rapid mixing 

process is less than 0.1 seconds. Table 9 presented earlier in this 
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chapter Indicates adsorption of the metal takes place In time scales 

of less than a second, and sweep floe forms In 1-7 seconds. Based on 

this, one must conclude that. It Is not possible to rule out a 

temperature Induced kinetic effect which could have a significant 

adverse Impact on the flocculatlon process based on samples taken at 

1 minute Intervals, 

One last thing to note Is the pH selected for the testing of each of 

the coagulants. The Iron was tested at a pH of 8 and the alum at a 

pH of 7. As we have already noted, the flocculatlon mode of metal 

coagulants Is extremely sensitive to the system pH. Consider Figure 

47 In light of Figures 33 and 34. Figure 47 represents the 

flocculatlon of a relatively low concentration of particles using 

varying doses of alum and ferric chloride at 1 *C. At 23 "C, both 

coagulants provided removal similar to the removal provided by the 

ferric chloride at 1 "C. The flocculatlon diagram, Figure 33, 

represents experimental conditions very close to the experimental 

conditions at 23 "C. Let's use this diagram to track what Is 

happening In the data of Figure 47. First at 23 degrees. If we 

start at the low alum concentration on Figure 33 and move up the pH 7 

line we see that once sufficient alum has been added, the conditions 

will always provide good flocculatlon. Morris (1983) states that the 

maximum pH depression experienced was 0.6 pH units. If It Is assumed 

that this maximum pH depression corresponds to the maximum coagulant 
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Figure 47. Comparison of turbidity removal efficiency under low 
temperature conditions by the use of alum and ferric 
chloride; 1 *0; alum @ pH-7; ferric chloride @ pH-8 
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dose, then at 110 mg/1 as alum, the pH will drop 0.6 units. This 

will still be in the sweep floe region. 

What happens at 1 'C? The previous interpretation of Velz (1934) 

indicated that the solubility diagram shifted 0.9 pH units with a 23 

"C change in temperature. Dempsey (1987) shows the solubility 

diagram shifting 0.6 to 0.8 pH units with a 24 'G shift in 

temperature. If one simply corrects the diagram to hold the pOH 

constant as the temperature drops, a 0.74 pH unit shift of the 

diagram to the right is anticipated over a 20 *C temperature change. 

This evidence might lead one to hypothesis that as the temperature 

drops and the pK^ of water changes, the pH of the system must be 

adjusted to maintain a constant pOH. Common sense would also support 

this, because the species of importance in flocculation with metal 

salts are various hydroxide polymeric species or precipitates. The 

net effect of this hypothesis is to suggest that the entire 

coagulation diagram will be shifted to the right on the pH scale at 

cold temperature. Without redrawing the figure, one could read the 

expected coagulation behavior by entering the figure at a lower pH 

corresponding to the cold temperature pH shift of interest. Entering 

the diagram at a pH of 6.1 would be equivalent to the constant pOH 

condition at 1 *G for an experiment conducted at pH of 7. 

One can use this hypothesis to interpret the observations in Figure 

47. Entering the alum coagulation diagram at pH - 6.1, sweep 
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coagulation would be expected at an alum dosage of about 40 mg/L as 

alum, somewhat higher than the 2 mg/L A1 (20 mg/L alum) observed In 

Figure 47. At the higher dosage used, the pH was depressed by the 

alum causing the operating point to fall well outside the sweep 

coagulation region with the consequent loss of coagulation evident at 

higher dosages in Figure 47. Again, assume that at the maximum 

dosage of alum, 110 mg/L as alum, a pH depression of 0.6 was 

experienced. Then the pH of 6.4 would be represented by a pH of 5.5 

on Figure 33. This pH represents flocculation conditions well 

outside of the sweep floe region for reasons discussed earlier. 

Assuming that 1/2 the maximum dose of coagulant will yield 1/2 the 

maximum pH depression, a 50 mg/1 dose at 1 *C would require entering 

Figure 33 at a pH of about 5.8. This is just outside the edge of 

good sweep floe. This scenario agrees with the Al^^ data in Figure 

47. 

Morris and Knocke (1984) ran the iron tests at a pH of 8.0. If one 

looks at the iron diagram. Figure 34, it is seen that this is in the 

middle of the very broad sweep floe region, and near the ZPC for iron 

hydroxide floe. The pOH can shift 2 full units, due to the cold 

temperature, at any dose and still not yield really poor 

flocculation. Thus, based on the pH at which the tests were run it 

is reasonable to expect that alum would have been effected more 

strongly by the temperature change than the iron. 
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Morris (1983) presents iron solubility diagrams calculated for 25 and 

0 *C, and shows no significant differences in the diagrams. It 

appears, however, that the pK^ for 25 *C was used in the calculations 

for 0 *C. Thus any shift which mi^t have been induced by the 

changing pK^ was not accounted for. 

Knocke et al. (1986) investigated the impact of temperature on 

flocculation with aluminum and iron salts. Two natural waters 

containing turbidity and color, were flocculated at pH levels of 5.5 

and 7.0, using 20, 40 , 60, 80, and 100 mg/1 of coagulant as the 

salt. The temperatures used were 2 and 22 *C. The following 

conclusion was drawn: 

Low temperature will have the greatest impact on the removal 
of suspended solids or turbidity by coagulation and 
sedimentation. Removal of soluble organic compounds by 
coagulation, sedimentation, and filtration is not as 
significantly affected by low temperatures...organics removal 
is accomplished by Incorporating these compounds into metal 
ion precipitates or floe." 

This comparison highlites the problems inherent in attempting to 

evaluate temperature effects using secondary parameters such as 

filtration and sedimentation. Since flocculation, sedimentation, and 

filtration are all effected differently by changes in water 

temperature one must be careful in making comparisons. 

The data in Figure 48 (Duluth Water Utility, 1987) show the effect of 

water temperature on optimal pH of flocculation. This figure 
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Figure 48. Full scale treatment plant operating curves showing pH goal 
versus temperature relationship for the Duluth, Minnesota 
water treatment plant 
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contains data from a full scale plant in Duluth Minnesota, which is 

treating Lake Superior water. These are operating curves for the 

treatment plant showing optimum treatment pH versus water 

temperature, for alum from two different sources. Note that with the 

Cloque alum, the pOH is very nearly constant at the temperatures 

which have been calculated. The pOH is also fairly constant for the 

non-Cloque alum, except at the higher temperatures. In light of the 

fact that this is full plant scale data, the agreement seen here is 

exceptional. 

Brink et al. (1988) used combined alum (0-25 mg/1 as alum) and 

polymer (0-8 mg/1 Cat-Floc T) to flocculate a very low turbidity 

water. Filtered turbidity versus dose curves were generated at 3 and 

19 *C, with all other conditions held constant. The curves produced 

were nearly Identical, showing no discernible temperature effect. 

Âl-Layla et al. (1974) studied the effect of temperature when using 

alum to flocculate live algal cultures. These researchers worked in 

the sweep floe region using 20 mg/1 or more of alum, at a pH of 8.0 

+/- 0.3, to flocculate algae at 10, 20 and 35 "C. They concluded 

that cold temperatures enhanced flocculation. This, however must be 

taken in context. At the warmer temperatures, the live algae 

produced gas bubbles which disrupted the floe. Because of this 

interesting phenomena it is difficult to draw any correlation between 

these results and the flocculation of inorganic materials at varying 

temperature. 
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Al-Anl et al. (1985) used a combination of alum and polymer to treat 

a very low turbidity water at different temperatures. Testing at 3 

and 17 "C using the optimal alum and polymer dose showed no 

temperature effect. Turbidity removals, standard plate counts of 

bacteria, and total coliform removal were all used to measure 

flocculation efficiency at 18 and 5 "C under four different 

conditions of chemical pretreatment. No difference in the 

performance parameters was measured for the two temperatures. It 

appears that this work was done in sweep floe, but the pH was not 

reported. 

Haarhoff and Cleasby (1988) studied the use of alum and ferric 

chloride to treat 3 *C water with a turbidity of less than 2 NTU. It 

appears from the discussion in this paper that the filter deposits at 

lower temperature, and therefore the floe formed at lower 

temperatures, are weaker than those formed at higher temperature. 

They found a number of interesting things. The ferric chloride was 

more effective at removing turbidity than the alum. At a molar 

dosage ratio of Fe-to-Al of 3:5.6, the headloss build up and 

turbidity removal for the two coagulants was identical. This 

indicates that at low temperatures there is a ratio of the ferric 

salt to the aluminum salt where they act identically. Based on their 

work the authors found no reason to reject alum as a low temperature 

coagulant. 
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Earlier an approximate temperature correction of the flocculatlon 

diagram was performed, and some of the data presented by Morris and 

Knocke (1984) were reevaluated. The re-Interpretation assumed that 

the buffer Intensity associated with a specific pH remained constant 

as the temperature dropped. Figures 49 and 50 Illustrate the shift 

In the speclatlon of the carbonic acid system and buffer Intensity 

Induced by a 15 *C temperature drop. These curves are calculated 

based on the equations and constants presented In Stumm and Morgan 

(1981) and are corrected for the change In pK^ with temperature. It 

Is seen that over the temperature range of Interest, the equilibrium 

state of the carbonic acid system must be considered constant at 

constant pH. The kinetics of the system are a little more complex, 

and these will be discussed In the results section. 

Catlonlc organic polvmers 

Edzwald (1981) notes that the use of synthetic organic polymers to 

Improve solid-liquid separation has been one of the most significant 

developments In water treatment In the last 25 years. By 1981 the 

U.S. E.P.Â. listed over 450 polymer products approved for use In 

potable water treatment (Hangravlte, 1983). The majority of these 

450 are Intended for use as flocculant aids, and not as primary 

coagulants. In this section we are Interested only In the catlonlc 
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polymers, which are capable of replacing the hydrolyzlng metal salts 

as the primary coagulants (Edzwald, 1981; Hangravlte, 1983). 

Gregory (1978b) points out that polymers effect colloidal stability 

in various ways. It will be assumed in this literature review that 

only the lowest concentration of polymer capable of destabilizing the 

suspension is of interest. Based on this many of the more exotic 

polymer stability considerations, i.e., steric interactions, 

multilayering, etc., can be ignored. 

There is universal agreement that the high density of positively 

charged sites on the cationic polymers are responsible for 

destabilizing negatively charged colloids. There is less agreement 

on the specific mechanics of the destabilization. The "patch" model 

proposed by Gregory seems to have the widest acceptance, and we will 

assume here that it is valid. Other models will be mentioned only as 

they influence our acceptance of the patch mechanism. 

The patch model applies to high molecular weight cationic polymers 

with a hi^ charge density. This model was developed by considering 

the distribution of charge densities on the polymers and on the 

surface of the particle to be destabilized. It is obvious that in 

many cases it is impossible for each of the charge sites on the 

surface to be neutralized individually by a charged polymer segment. 

When enough polymer has been adsorbed to neutralize the net negative 
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charge on the surface, a patchwork of and charged areas 

results. If, in a collision between two particles, a and a 

area collide the electrical interaction will not only allow them to 

come together, but will actually pull them together. This 

acceleration effect is actually measurable. Gregory (1978b) notes 

that this causes flocculation at an appreciably greater rate than 

predicted by the Smulochowski theory. As the ionic strength of the 

solution increases, the electrical enhancement of the flocculation 

process due to the patch effect decreases. Just as one would expect. 

This model also explains another phenomenon that simple uniform 

charge neutralization does not explain. When using a high molecular 

weight cationic polymer, one can get measurable flocculation with a 

negative zeta potential as large as -30 mv. This is appreciably more 

negative than the +/- 12 mv band usually considered acceptable 

(Gregory, 1978b). This enhanced flocculation has been attributed to 

bridging by some investigators. However, it is generally accepted 

that a polymer with a high density of "+" charges will lie fairly 

flat on a negative surface, and will not be subject to appreciable 

bridging (Gregory, 1978b). This is particularly true of highly 

branched polymers. It is primarily because of the increased 

flocculation rate and increased breadth of charges which will yield 

acceptable flocculation, that the patch model is seeing increased 

acceptance. 
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Poly (dlallyldlmethylainmonluni chloride) or poly DADliAC polymers and 

the poly quaternary amines or FQA polymers are the two types of 

cationic polymers most commonly used In the water treatment Industry 

as primary coagulants for turbidity removal. Cat Floe T and 

HagniFloc 573G are examples of the poly DADMÂC and FQA polymers 

respectively. The poly DADHAC is linear and the high molecular 

weight FQA polymers are branched (Mangravite, 1983). Neither of 

these polymers is sensitive to pH changes over the range of pH values 

normally experienced in water treatment (Mangravite, 1983). The 

structure of the FQA base unit is shown in Figure 51 (Haarhoff, 1988; 

Mangravite, 1983). Cationic polymers are sold as concentrated 

aqueous solution (Mangravite, 1983). This concentrated polymer is 

diluted from 25-50 percent down to 1-5 percent for metering to the 

water to be treated. Both the concentrated and the dilute solutions 

are quite stable (Mangravite, 1983). Table 10 (Haarhoff, 1988) 

illustrates the charge stability of 3 cationic polymers which have 

been diluted to 1 mg/mL. 

There is very little literature available with regard to the use of 

cationic polymers as primary coagulants. The majority of the work 

available deals with the use of polymers as coagulant aids. Much of 

the work available which does discuss cationic polymers as a primary 

coagulant, deals with direct filtration applications, and not with 

conventional flocculation. 
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Table 10. Characteristics of the cationlc polymer used 

CATFLOC T HÂGNIFLOC MÂGNIFLOC 
572C 573C 

Manufacturer 
Type 
Molecular weight 
Form 

Calgon 
DADMAC* 
high 
viscous liquid 

Charge Concentration 
after dilution to 1 mg/mL 
(peq/mg) 

Cyanamld 
PQA® 
medium 
viscous liquid 

Cyanamld 
PQA 
high 
viscous liquid 

immediately after 1.6 4.2 3.9 
after 1 day 1.6 4.2 3.9 
after 3 days 1.4 4.2 4.0 
after 8 days 1.4 4.1 4.0 
average 1.5 4.2 4.0 

Edzwald et al. (1987) - pH 7 4.1 4.2 

NPOC (mg NFOC/mg polymer) 0.21 
(Non-Purgable Organic Carbon) 

*Poly (dlallyldlmethyl ammonium chloride), 
"Polyquaternary amine. 
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R R 

n 

polyquaternary amine 

Figure 51. The basic structural unit for poly-quaternary amine catlonlc 
polymers 
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There are Indications in the literature that polymers are not 

sensitive to rapid mixing conditions (Dentel et al. 1986; Eilbeck and 

Mattock, 1987). However, one must be very careful to note the type 

of polymer and the application. If the polymer is not sensitive to 

rapid mixing conditions it is probably not being used as a primary 

coagulant, it is being used as a coagulant aid or flocculation aid. 

Mixing conditions are important when using cationic polymers as the 

primary coagulant (Mangravite, 1983; Birkner and Morgan, 1968; Leu 

and Ghosh, 1988; Ghosh et al., 1985; Stump and Novak, 1976; Yeh and 

Ghosh, 1981; and Morrow and Rausch, 1974). 

Not only is mixing intensity important, but mixing time may also 

important for the dispersion of the polymer. Gregory (1978b) showed, 

from theoretical considerations, that, even if one assumes Instant 

and uniform polymer dispersion, the adsorption step may be 

sufficiently slow to effect the flocculation process. The assumption 

of Instant and uniform polymer dispersion is very questionable. In a 

semi-dilute polymer solution, with a "good" solvent, and no fluid 

motion, polymer dissolution is a two step process (Brochard and 

DlGennes, 1983). The first step is a swelling of the transient 

network. The transient network refers to the tangle of polymer 

molecules in solution. All of the polymer chains will tend to spread 

out from regions of high concentration to regions of low 

concentration. In the second stage, viscous yield of the network, 

the polymer knots are slowly undone under the action of osmotic 
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forces. Brochard and DlGennes (1983) note that the super-imposed 

effects of shear flow on the dissolution process are probably quite 

complex. Slqrluk and Stow (1969) also discussed the activation energy 

associated with physical disentanglement of a polymer molecule from a 

crowded area to an uncrowded area. At this point, it is not possible 

to speculate on how disentanglement impacts the rapid mixing of 

polymers, and therefore, flocculation with polymers. However, one 

thing is obvious, the situation with high weight organic cationic 

polymers is much different than the situation involving the use of 

metal salts as primary coagulants. 

Yeh and Ghosh (1981) notes that "very little attention has been given 

to developing a rational procedure for the selection of the "right" 

polymer for a specific Job". Ghosh et al. (1985), Yeh and Ghosh 

(1981), and Leu and Ghosh (1988) have attempted to fill the void by 

categorizing polymers by molecular weight, charge density, and the . 

monomer from which the polymer is synthesized. The various 

categories of polymers are then tested under various treatment 

conditions. Although this is an improvement it still leaves much to 

be desired. As Yeh and Ghosh (1981) note, the use of polymers could 

be vastly improved if the polymer manufacturers would take a more 

enlightened attitude toward providing needed information. According 

to Yeh and Ghosh, the type of information needed from the 

manufacturer for the selection of cationic polymers for direct 

filtration includes: 
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o type of polymer or copolymer, 

o concentration of active Ingredient, 

o concentration of free monomer, 

o proportion of ionizable groups, 

o molecular weight or intrinsic viscosity under specified 
conditions. 

This information, with the extent of mixing required to disperse 

polymers effectively in the water, would begin to make Intelligent 

decisions possible (Yeh and Ghosh, 1981). 

Mangravite (1983) points out that even when molecular weights are 

provided by the manufacturer-, one is never sure what the number 

really means. Different manufacturers define the average molecular 

weight differently, i.e., weight average, number average, etc. There 

are also problems with using the intrinsic viscosity to estimate 

molecular weight and size. Rabin (1988) says that the intrinsic 

viscosity relationship is much more complex than once thought. He 

goes on to show that one of the widely used relationships does not 

even provide qualitative agreement with actual behavior of the 

polymer in dilute solution. In addition, the hydrodynamic volume of 

a highly branched polymer will be very different from that of a 

linear polymer. Thus, comparisons of molecular weight based on 

intrinsic viscosity can be very misleading (Mangravite, 1983). 
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All of this Is to say that we do not fully understand the rapid 

mixing of polymers, and how that rapid mixing will affect the 

flocculation process. With these qualifying remarks in mind, let's 

compare our expectations with the experience in the literature. 

Birkner and Morgan (1968) flocculated 1.3 pm polystyrene latex 

particles using poly(ethylenimine) (PEI), a low molecular weight 

cationic polymer (3.5x10^ g/mole). PEI polymers are a highly 

branched primary coagulant. This polymer has been used extensively 

in laboratory studies, but is not used in water treatment, because it 

is expensive and relatively inefficient (Mangravite, 1983). The 

rapid mix conditions used by Birkner and Morgan were not specified. 

The flocculation conditions were varied from a 6 of 11 to 120 sec"^, 

and time from 6 to 424 minutes. Starting with 2x10^ particles/mL, 

flocculation at optimum polymer dosage, mixing intensity, and mixing 

time was carried out. This resulted in a 20 percent reduction in the 

total particle concentration after 25 minutes. The following trend 

in optimum mixing intensity with time was noted: 

Time (minutes) Optimum Mixing Intensity (G; sec'^) 

6 93 
25 47 
92 11 
424 11 

The authors concluded that the value of G which provided the maximum 

reduction in primary particles, decreases as the elapsed time 
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Increases. This was taken as evidence that mixing intensity is a 

very important factor in floe breakup in latter stages of 

flocculation. Temperature effects were not discussed. The positive 

charge density of FEI is pH sensitive (Mangravite, 1983). Without 

knowing the rapid mixing conditions and the pH conditions it is not 

possible to use this data in attempting to develop a global view of 

cationic polymer flocculation. 

Morrow.and Rausch (1974) found that cationic polymers can replace 

inorganic salts by applying a mixing intensity of 400 sec'^ or 

greater during rapid mixing. The authors used a pilot scale plant at 

three locations to compare conventional rapid mixing to high 

intensity rapid mixing. Conventional rapid mixing was defined as a G 

of 300 sec'l for 10-60 seconds. The field results showed that a 

rapid mixing intensity of 300 sec'^ was not always effective with 

cationic polymers. This was attributed to the non-uniform 

distribution of polyelectrolyte, due to the low energy and short 

duration of the mixing period. In preliminary laboratory scale batch 

studies using Ohio river water, velocity gradients of greater than 

400 sec'l with rapid mix times of less than 2 minutes were optimal 

for use of an unspecified cationic polymer. As the velocity 

gradients were increased the rapid mix time needed was decreased 

until at a G of 1000 sec*^ only several seconds were necessary. 
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The first pilot scale study, by these authors, involved treating 

natural river water from the Beaver River at New Brighton. In this 

study a quaternary ammonium polymer (a modified poly DHDAAC; Cat Floe 

B) was used. Two polymer dosages were evaluated at G values of 730, 

600, 425, and 250 sec'^. The rapid mix time was varied from 30 

seconds at a G of 750 sec'^ to 3 minutes at a G of 250 sec"^. At 1 

mg/1 of polymer the optimum rapid mix was a G of 750 sec"^ for 30 

seconds. At a dose of 2 mg/1, 425 and 600 sec*^ appeared optimal, 

with a noticeable decline in efficiency at a G of 750 sec'^. 

Temperature data were not provided, however, the comment was made 

that temperature changes had no impact on the use of cationic 

polymers. 

The second study involved treating Missouri river water in St Louis 

County. This water has an annual turbidity range from 40-2,500 JTU. 

Both the poly DHDAAC (Cat Floe) and a modifies poly (DHDAAC) were 

tested. With the Missouri water it was concluded that the cationic 

polymer functioned most efficiently in a rapid mixing G range of 500 

to 1,000 sec'^. The duration of the rapid mix was not specified. 

The third study involved treating Mississippi river water in East St. 

Louis. Turbidity ranged from 100 to 300 JTU. The polymers used were 

poly (DHDAAC) and a modified poly (DHDAAC). Both polymers performed 

well when rapid mixed at G values of 450 and 600 sec'^. Alum, tested 

at the same time, performed well when rapid mixed at a G of 300 
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sec'l, but perfoxrmed poorly when rapid mixed at a G of 600 sec'^. 

The duration of the rapid mix was not specified. 

Stump and Novak (1976) studied the effect of rapid mixing time, rapid 

mixing intensity, and flocculation time on direct filtration. À 

synthetic water with 300 mg/1 of hardness as GaCOg was used in the i 

study. 100 mg/1 (80 ftu) of kaolinite was used to provide the 

primary particles. Nine polymers, 8 catlonic and 1 non-ionic, and 

alum where evaluated in this study. The default rapid mix time was 2 

minutes. The flocculatlon conditions were not explicitly stated, but 

it appears that the mixing intensity was constant at a G of 20 

sec'l, and the flocculation time was varied from 0 to 60 minutes. 

Both settled turbidities and direct filtration efficiency were used 

as a measure of flocculation effectiveness. 

Five of the low molecular weight polymers were PEI polymers (MM of 

6x10^ to 1x10^ g/mole). A few of the general characteristics of PEI 

polymers were given previously. The other low molecular weight 

polymer was a polyamine (5x10* g/mole). The polyamine is a branched 

polymer, and its charge density is pH dependent (Mangravite, 1983). 

The high molecular weight catlonic polymers (2x10* and 3x10® g/mole) 

both appear to be poly quaternary amines. These are slightly 

branched and pH has little effect on their charge density 

(Mangravite, 1983). The following conclusions were drawn based on 

the settled turbidity studies. 
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Alum, anionic polymer and low molecular weight cationic polymer all 

provided the best turbidity removal at the lowest rapid mixing 

intensity; G-lOO sec"^. In general, as the molecular weight of the 

cationic polymer decreased the advantage of intense rapid mixing also 

decreased. The effect of the rapid mixing duration on the 

effectiveness of the low molecular weight polymers was found to be 

negligible when tested at 0.5 and 2 minutes. 

For the higher molecular weight cationic polymers, both mixing 

intensity and duration were important. Both of the high molecular 

weight polymers improved from 25 percent turbidity removal to 90 

percent turbidity removal when rapid mixing intensified from 100 

sec'l to 350 sec'l for 2 minutes. The optimum rapid mix for the 

turbidity removal using the highest molecular weight polymer was 750 

sec'l for 4 minutes. There was, however, not a large difference 

between the 1, 2, and 4 minute values. At rapid mixing intensities 

of 950 sec'l and 1250 sec"^ for 1 minute, the turbidity removal was 

impaired, but still better than what it was at 100 sec'^. The 2 and 

4 minute duration rapid mixing also showed a decrease in 

effectiveness at intensities of 950 and 1250 sec'^, but the decrease 

in effectiveness was not as substantial as observed for the 1 minute 

duration. 
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Sedimentation studies showed that flocculatlon times in excess of 10 

minutes are required with both low and high molecular weight cationic 

polymers. Twenty minutes of flocculatlon appears optimal In terms of 

increased turbidity removal/increased flocculatlon time. 

Stump and Novak (1976) also investigated the effect of rapid mixing 

and flocculatlon time on direct filtration. Two polymers were used 

in this portion of the study; the 5x10* g/mole polyamlne, and the 

3x10* g/mole poly quaternary amine. Rapid mixing was for 2 minutes 

at a 6 of 100, 350, and 950 sec'^. Flocculatlon was for 0, 10, and 

20 minutes at a G of 20 sec'^. Filtration was at 5 gpm/ft^. The 

measure of success was gallons of water filtered per ft^, prior to 

run termination. The runs were stopped when headloss exceeded 10 

inches of water, or the turbidity exceeded 1 FTU. 

The optimal conditions for the polyamlne were; rapid mix for 2 

minutes at a G of 350 sec'^, and flocculate for 20 minutes at a G of 

20 sec'l. These conditions provided twice the filtered water 

capacity of the next best condition. The optimal conditions for the 

poly quaternary amine were; rapid mix at a G of 950 sec'^ for 2 

minutes, and then flocculate at a 6 of 20 sec'^ for 20 minutes. 

These conditions provided three times the filter capacity of the next 

best conditions. Using the low molecular weight polymer at optimal 

conditions produced 2.6x as much water as the high molecular weight 

polymer at optimal conditions. It is not known how changing the 
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flocculatlon Intensity would have affected this result. It is also 

not known if the filtration runs were terminated due to turbidity 

breakthrough or due to excessive headloss. 

Yeh and Ghosh (1981) studied the effect of polymer characteristics 

and mixing energy on direct filtration. The test suspension was 75 

mg/1 (20 NTU) bentonite clay suspension. The author found that for 

cationic polymers, with molecular weights less than 100,000 g/mole, 

the dominant coagulation/flocculation mechanism was charge 

neutralization, not bridging. The hi^ molecular weight poly 

quaternary amine (3x10^ g/mole) used in this study was the same 

polymer used by Stump and Novak (1976). Rapid mixing at 100 sec'^ 

was not adequate for this polymer regardless of subsequent slow mix 

conditions, because the low intensity rapid mixing did not disperse 

the polymer sufficiently. The optimum rapid mix for this polymer 

appeared to be at a G of 650 sec'^ for 3 minutes. The following 

general conclusion was drawn for low to medium weight polymer (10,000 

to 100,000 g/mole); rapid mixing at a G in the range of 300 to 650 

sec'l for a period of 3 to 8 minutes was necessary. 

Ghosh et al. (1985) studied 12 commercially available polymers; 4 

PEIs, 3 with an amine type structure, and 7 poly (DADHAC)s. The 

effect of mixing on the efficiency of the polymer was studied using a 

25 NTU bentonite suspension and the optimal dosage of the respective 
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polymer. The 6 of the rapid mix was varied while the following were 

held constant: 

o rapid mix 2 minutes 

o flocculatlon time 10 minutes 

o . flocculatlon Intensity G-25 sec'^. 

The molecular weight of the polymer varied from 2.2x10^ to 1.1x10? 

g/mole. Rapid mixing was considered optimal when the mean particle 

diameter, D^, was maximized. The is the number-volume mean 

diameter, and can be calculated from the following formula: 

®NV " 

D - mean particle size in a given size range 

N number of particles in a given size range. 

The optimum rapid mixing intensity was 800 sec'^. When a rapid 

mixing intensity >800 sec'^ was employed there was no significant 

Increase in the of the floe produced. Only one of the polymers, 

a FEI (MW of 2x10^ g/mole), experienced a decrease in when rapid 

mixing intensities between 800 to 1400 sec'^ were employed. 

Leu and Ghosh (1988) in studying cationic polymers as a primary 

coagulant noted that the complex effect of flocculatlon variables, 

suspension properties, polymer properties, and mixing conditions make 
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the literature appear somewhat inconsistent. They drew the following 

conclusions: 

o Although the initial periods of both rapid and slow mix 
seem to be important in flocculation with polymers, rapid 
mixing is more critical. 

o Good flocculation was obtained by using a high G value for 
a short time in rapid mixing. 

o To a large extent rapid mixing conditions (G and t) rather 
than the characteristics of the polymer determine the shape 
of the particle size distribution. 

The second conclusion listed above may be misleading at first 

appearance. From the text it becomes obvious that a high G value for 

a short time refers to a G values in the range of 850 to 1250 sec'^. 

The authors specify the rapid mix Gt as 2x10^. Therefore, the 

authors are recommending mixing times of 2.5 to 4 minutes. This 

recommendation appears to stem from the floe breakup which the 

authors observed if rapid mixing at a G of 850 sec'^ extended beyond 

4-5 minutes. The third conclusion also warrants some clarification. 

The authors data make it clear that structure and molecular weight 

are both significant. However, if the rapid mixing is intense enough 

and long enough to disperse the polymer properly, but not so long and 

intense that floe breakup occurs, all the polymers tested did a good 

job. No testing was performed at multiple temperatures. 

MagniFloc 573C was selected for the work performed in this study. 

This is a poly quaternary amine (PQA), with a molecular weight of 
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approximately 0.5x10^ to 1x10^ g/mole. Haarhoff (1988) reported the 

following ultrafiltration separation information for this polymer. 

Table 11. Molecular weight fractions of a dilute suspension 
of MagniFloc 573C 

Recovery after Molecular weight fraction 
ultrafiltration <10K* lO-lOOK >100K 

% of NFOC 102% 15 3 84 

% of charge 
concentration 95% 0 0 95 

*KiloDalton. 

A dalton equals 1.66024x10"^^ grams. The molecular weight fractions 

given In the preceding table refer to the weight of a molecule of 

standard protein. If one assumes that the standard protein and the 

polymer are geometrically similar, this table indicates that the 

majority of the charge is associated with the 1x10^ g/mole fraction 

of the polymeric mixture. 

The polymer was separated into three different molecular weight 

fractions by ultra filtration. The charge concentration before 

separation was 4.0 /leq/mg of polymer in a 16.7 mg/1 polymer solution. 

The charge concentration found in the >100K fraction after 

ultrafiltration accounts for 3.8 peq/mg in the original solution. 

Thus, we can feel comfortable in assuming that the molecular weight 
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of the organic polymer being used to destabilize the particles Is 

-1x10® g/mole. 

Farlnato (1988) Indicated that In a "Good" solvent the radius of 

gyration for HagnlFloc 573C should not be strongly temperature 

dependent. Water is a good solvent for this polymer, and there 

should be very little change in the radius of gyration between 20 and 

5 "C. If the radius of gyration were a strong function of 

temperature, one would also expect the diffusion rate of the polymer, 

at infinite dilution, to be a strong function of temperature. 

However, it appears that the diffusion rate of the polymer should be 

insensitive to temperature effects. 

Based on the literature reviewed here, one would expect that: 

o if the appropriate mixing time, mixing intensity, and 
system chemistry are selected, 

o and if the structure of the turbulent flow field is 
unimportant, 

then one should be able to produce identical flocculation results at 

low and high temperature using cationlc polymers. This of course 

assumes that floe breakup does not dominate. If the results are not 

identical, it will be necessary to determine whether the differences 

in response are due to inadequate rapid mixing, changing system 

chemistry, or a variation in the turbulent flow field structure. 
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Particle Counting 

Traditional flocculatlon research has been based on indirect measures 

of flocculatlon efficiency, such as settled water turbidity or 

filtered water turbidity (Lawler, 1987). This created an environment 

where phase separation was equated with flocculatlon. Treweek and 

Morgan (1977) noted that this measurement of physical separation 

biased investigators toward improvement of the physical separation 

processes, at the expense of possible chemical alterations which 

would enhance the destabilization phase of coagulation. Measuring 

the aggregate size distribution and number concentration allow the 

investigator to study directly the destabilization and aggregation of 

the colloids, rather than measuring the end result of the entire 

process, i.e., phase separation. 

The current trend is toward the use of electronic particle counters. 

Lawler (1987) notes that the direct measure of changes in the 

particle size distribution brought about by flocculatlon allows a 

better focus on the effect of changing variables related to the 

flocculatlon process alone. The motivation in monitoring changes In 

the particle size distribution is to optimize the growth of particles 

out of the 1-10 ftm range, which are difficult to remove, and into the 

10+ /an range. The desired final floe size will depend on the unit 

process to be used to remove the floe from the water. 
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In this work turbidity has been used as a quality control parameter, 

and electronic particle counters and automatic Image analysis (ÂIA) 

were considered for sample analysis. These three measures of 

particle number concentration will be discussed briefly. 

Tmbidlty 

The turbidity of a sample Is a measure the amount of light the sample 

scatters at an angle of 90 degrees from the Incident beam measured in 

a standardized Instrument. The water treatment Industry as a whole 

makes extensive use of turbidity as an Indicator of particle number 

concentration. The basic assumption Is this; If there are more 

particles present, then there will be more light scattered. It turns 

out that this Is true within certain limits, there is a correlation 

between turbidity and particle concentration. However, the 

relationship is neither simple, nor consistent for all particle 

systems. Turbidity will provide an indication of what is happening, 

but it does not provide detailed information. The following 

literature will Illustrate some of the frustrations involved in 

trying to use turbidity as a primary measurement in flocculatlon 

work. 

Beard II and Tanaka (1977) reported that many investigators have 

found it difficult to obtain accurate, consistent results with simple 

turbidity measurements. This probably isn't surprising since 

turbidity is a colllgatlve property which depends upon particle 
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shape, refractive index, wavelength of the light source, particle 

size, and particle concentration. These authors found, using a HIÂC 

particle counter, that turbidity measurements underestimated the 

concentrations of 2.5 to 10 /im particles. 

Treweek (1979) pointed out that a major limitation of turbidity as a 

measure of flocculatlon is that: "while the PSD may change 

significantly, this change may not be reflected in a corresponding 

turbidity change... Particle counts in contrast to turbidity 

measurements, provide a direct measure of particulate matter in the 

water and its size distribution". Kavanau^ et al. (1980) indicated 

that turbidity correlates poorly with particle number concentration 

measured using particle counting instruments. 

Friedlander (1977) stated that most of the light scattered in 

turbidity is scattered by particles less than 10 fim and the majority 

of the light is scattered by 0.01 to 1.0 /im particles. Hudson (1965) 

stated that the most of the turbidity is caused by particles smaller 

than 10 fim, with the majority being caused by particles smaller than 

1.5 ftm in diameter. Thus, one would expect turbidity to correlate 

well with particle number concentration in the small particle sizes. 

Dentel et al. (1986), found that turbidity correlated well with 

particle counts. Cleasby et al. (1988) presented data from a survey 
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of filtration plants producing low turbidity finished waters. In 

these data both the raw and finished water turbidity versus particle 

count data were presented. For turbidities above 0.3 ntu, the 

turbidity correlated well with HIAC (60 /m sensor) total particle 

count. Below that point the correlation was poor. Previous work 

(HcTigue and Berman, 1988) using particle counters at Tulsa, 

Oklahoma, confirmed work by Gleasby (1988) indicating that at 

turbidities less than 0.3 ntu, particle counts could not be 

correlated with turbidities. 

Since turbidity is a colligative property, one mi^t expect that as 

the number concentration of particles approaches some lower limit, 

the quality of the data, and therefore, the correlation will become 

poor. 

Electronic particle counters 

Kavanaugh et al. (1980) and Lawler et al. (1980) both agree that the 

use of particle size distribution information in process design, 

process selection, and operations decisions, provides a great 

improvement over secondary measures, such as simple turbidity. If 

one accepts this one must still select a method for measuring the 

particle size distribution. The technical literature contains very 

little solid data on how various particle counting instruments 

compare. There have been a number of publications which included 

reviews of currently available particle counting instruments's 
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(Allen, 1981; Treweek & Morgan, 1977; Kavanaugh, et al. 1980; Dentel 

et al. 1986; Groves, 1980). Unfortunately, none of them was a side 

by side comparison of the hardware. The majority of the information 

appears to have, come from available literature, and personal 

experience in which the instruments were used under experimental 

conditions which may have been very different. Groves (1980) points 

out that in selection of participe counting Instruments "it is 

essential for the analyst to realize the practical limitations which 

are inherent in any method of analysis which is available." 

Lawler (1987) states that the two most common particle size 

distribution measuring instruments are the Coulter counter type and 

the HIAC type instruments. Akers (1978) maintains that the two most 

commonly used counting techniques are the Coulter type counters and 

the microscope. 

The Coulter type counter and the HIAC have been the two most commonly 

used particle counting Instruments in the water treatment literature. 

Tekippe and Ham (1970), Birkner and Morgan (1968), Lawler et al. 

(1983), Hannah et al. (1967a), Ives and Dibouni (1979), Leu and Ghosh 

(1988), Snodgrass et al. (1984), Ghosh et al. (1985), etc., have used 

the Coulter type counter in investigations dealing with particle size 

change and flocculation. Pandya and Speilman (1983), Reed and Mery 

(1986), Treweek (1979), Beard II and Tanaka (1977), Srlcharoenchalklt 

and Letterman (1987), Yeh and Ghosh (1981), etc., have used the HIAC 
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in Investigations tracking particles and flocculatlon. It Is widely 

admitted by the Investigators above, and by others (Glbbs, 1982; 

Kavanaugh et al., 1980; Sonntag and Russel, 1986; Lawler, 1987; 

Mathews and Rhodes, 1968; Grasso and Webber, 1988; and Gamp, 1968) 

that, while these Instruments are useful, they also have limitations. 

The results presented by HcTlgue et al. (in press) in Table 12, 

indicate that the measurements from six different types of particle 

counters counting the same sample are not directly comparable to each 

other, either In determination of total numbers of particles, or in 

their size. 

Electronic particle counters have been the heart of a debate which 

has been continuing for many years. The primary question has been 

how accurate is particle counter data and exactly how reproducible 

are the results? This is an especially troublesome issue when one is 

dealing with a suspension which has been flocculated. It is 

universally agreed that each technique has strengths and weaknesses. 

Regardless of the particle counter used, sample handling is one of 

the largest sources of potential error. Lawler (1987) has published 

some general guidelines for sample handling developed specifically 

around the Coulter Counter. In general, the guidelines can be 

reduced to one sentence. Sampling of process flow streams, and 

subsequent sample handling and dilution must be carried out with 
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Table 12. Particle counter comparison 

Instrument 
Name 

Type Range 
{(to) 

Raw Water 
(*/ml) 

Finished 
(#/ml) 

Researcher 

HIAC PC-320 
60 fixa. Sensor 

Spectrex 
SPC-410 
Sensor 1 
Sensor 2 

Elzone 

Light 
Blockage 

Laser Light 
Scattering 

Electrical 
Resistance 

1-60 

17-100 
1-17 

.3-1,200 

204,618 

16,000 
140,000 

2,282,564 

1,160 

418 
378 

Cleasby, ISU 

#1 Burman, 
Tulsa 
#2 McTigue 

Factory 

Coulter 

Brlhkman 

Electrical 
Resistance 

Laser Light 
Blockage 

.5-900 

.3-300 

1,500,000 4,200 

700,000 8,300 

Lawler, Tex. 
A&H 

Amitharaj ah 
G. I of T 
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extreme care (Lawler, 1987). Floe breakup Is the largest concexnn. 

PSD measurement is complicated by the fact that the PSD may change 

during the course of the analysis (Kavanaugh et al. 1980). These 

changes are usually attributed to aggregate breakup during sampling, 

sample preparation, or in passing through the instruments sensing 

zone (Kavanaugh et al. 1980). 

Work by Gallegos and Menzel (1987) has indicated that the effect of 

holding time is largely suspension dependent. Using a Malvern 

Autosizer II(PSD instrument), they measured particle size 

distribution changes over time for a number of natural samples. They 

found that an undiluted sample of water from a turbid creek carrying 

storm water began to flocculate after 2.5-6 hours, but particles from 

a turbid impoundment remained stable for 10 days. It is not possible 

to make a general statement with regard to the absolute effect of 

sample storage on the analysis provided by various instruments. 

Coulter type counter The Coulter principle is the basis for 

the Coulter counter and other electro-zone particle counting 

instruments (Groves, 1980). This principle is based on the fact that 

when a particle passes through a small orifice, which is submerged in 

an electrolyte solution, with electrodes on either side of the 

orifice, the resistance between the two electrodes is increased 

momentarily. The increase in resistance is caused by displacement of 

electrolyte, and is known to be a function of the particle volume. 
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According to Groves (1980), there are no flaws in the basic theory 

associated with this instrument, and it is capable of making a 

valuable contribution in the measurement of FSDs of fine powders. 

There are, however, a number of concerns when using the instrument 

with floe. 

Tekippe and Ham (1970), discussed the potential for floe breakage 

using this instrument, and concluded that Coulter counter samples 

should be periodically inspected with a microscope, to guard against 

erroneous results due to floe breakage. TeKippe and Ham also 

recommend calibrating the Coulter counter using actual floe and a 

light microscope. 

Kavanaugh et al. (1980) expresses concern over breakup of floe, and 

states that it will probably be necessary to use two or three 

different orifice sizes in sequence to avoid the breakup of larger 

floe. It is not clear how the large floe are removed from the sample 

prior to measurement with the smaller orifice. Or, if they are not 

removed, how their breakup during measurement with the smaller 

orifice will impact the results. 

Snodgrass et al. (1984) noticed breakup of floe when using a 30 pm 

orifice as opposed to a 90 fta orifice. This breakup was evident even 

though the Reynolds number which had been 550 in the 90 pm sensor. 
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had been reduced to 60 in the 30 /urn sensor. It is assumed that the 

Reynolds number has been based on the aperture diameter. 

Floe breakup is only one concern. Another concern is particles 

growing into a sensors resolution range. A Coulter sensor is 

reliable from 2 to 40 percent of the aperture diameter. Thus a 90 /im 

sensor can measure over a iZ /im to 36 /un range. Particles smaller 

than 2 urn will grow into the useful range of the instrument, and may 

cause the researcher some difficulty (Treweek and Morgan, 1977). 

A basic premise of the Coulter counter is that there is only one 

particle in the orifice at a time. If there is more than one 

particle in the sensing zone at a time they will be counted as one 

larger particle. This is referred to as coincident counts. To 

prevent coincident counts, it is necessary to dilute the samples to 

some predetermined particle concentration. Coincident counts are a 

potential source of very large error (Mathews and Rhodes, 1968; 

TeKippe and Ham, 1970; Kavanaugh et al. 1980). 

TeKippe and Ham (1970) discuss the impact of adding electrolyte , and 

conclude that it is probably not a concern. 

Treweek and Morgan (1977), Ghosh et al. (1985), and Mathews and 

Rhodes (1968) all express concern over the fact that aggregates may 

have a length which exceeds the thickness of the sensing zone. This 
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will cause a pulse which has width as well as height. The 

electronics in the Coulter is not capable of dealing with a two 

dimensional peak. This may be a source of significant error. 

Treweek and Morgan (1977), and TeKippe and Ham (1970) discussed the 

effect of floe porosity on the Coulter counter. Treweek and Morgan 

gave a method for correcting for the errors caused by the floe 

porosity. 

The Coulter counter has a practical range of 0.5 to 900 urn (Treweek 

and Morgan, 1977; Groves, 1980). 

HIAC particle counter The HIAC is a ligjht blockage particle 

counter. The particles to be counted are suspended in a fluid which 

has a refractive index different than the particles. The suspension 

is then passed throu^ the sensing area. The sensing area consists 

of a small rectangular cell with windows on opposing sides. A 

collimated beam of light from a high intensity quartz halogen lamp is 

directed throu^ the stream of liquid from one side of the cell. The 

beam of light is detected by a photodiode on the other side of the 

cell. As a particle passes through the sensing zone, the light 

intensity drops proportional to the cross-sectional area of the 

particle. The geometry of the sensor is such that the flow in the 

sensor is turbulent causing the particles to tumble as they pass 

throu^ the sensing zone. The tumbling causes the amplitude of the 
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peak produced to be proportional to the greatest projected area of 

the particle (Allen, 1981). 

A number of Items which were of concern with the Coulter counter are 

not concerns with the HIAC, Including: 

o electrolyte effect, since no electrolyte Is needed (Groves, 
1980; Kavanaugh et al. 1980), 

o porosity concerns, and 

o floe geometry effecting the pulse height, since the pulse 
Is maximized by the particle tumbling (Allen, 1981). 

The two main concerns with the HIAC appear to be sample dilution and 

floe breakage. 

Beard II and Tanaka (1977) in comparing the HIAC particle counts with 

turbidity measurements say that the HIAC is relatively unaffected by 

particle shape, particle refractive index, and the wavelength of the 

ll^t source, but it does require dilution of the sample. Beard used 

a 1-60 pm sensor to analyze filter effluent and found the 

turbidimeter was measuring 85.1 % removal of total solids while the 

HIAC measured a 98.2 % removal. The authors went on to recommend the 

use of the 60 /im sensor on all filter effluent samples, because of 

its sensitivity in the 1-2.5 fim range. It is worth noting that they 

did not check their results with the light microscope. The 

investigators concluded that the HIAC would readily and reliable 

provide particle size and concentration on a real time basis. Groves 



www.manaraa.com

179 

(1980) and Kavanau^ et al. (1980) also state that the HIAC Is 

suitable for on line measurement of particles down to 1 pm, but may 

require considerable dilution of the sample. Kavanaugh et al. (1980) 

expressed concern over monitoring filter influent with the HIAC, and 

recommended that the filter effluent be monitored to prevent problems 

with sensor blockage, coincident counts, and floe breakup. 

Sricharoenchaikit and Letterman (1987) used a 60 /tn sensor, and 

assumed that all particles larger than 2 pm would be counted. These 

investigators recognized the possibility of floe breakage, but 

asserted that it was negligible, since no aggregates with an 

equivalent circular diameter of larger than 20 ftm were measured. The 

authors assertion that breakup was negligible was based on a 

statement by Gibbs (1982) regarding the breakup of floe which 

exceeded 40 percent of the sensor aperture. Gibbs (1982) compared 

PSDs for a number of naturally flocculated materials and a number of 

laboratory produced floe. The size distributions were measured using 

a HIAC particle counter and ligfht microscope. Gibbs found that any 

floe larger than 40 percent of the sensor aperture width experienced 

severe breakup. He recommended that an independent method be used to 

cheek for floe breakage before a HIAC be used to measure PSDs of any 

flocculated material. Figure 52 illustrates the breakup observed by 

Gibbs. It should be noted that although Sricharoenchaikit and 

Letterman asserted that breakup was negligible, they did not verify 

this microscopically. Reed and Hery (1986) compared HIAC particle 



www.manaraa.com

180 

OPTICAL AFTER HIAC 

tlLja tiija Au» AMO 
OZMCTER IN MICRONS 

au» 

Figure 52. Size distribution for kaollnlte floes measured by using a 
microscope before HIAC analysis (top), by HIAC (middle), and 
by using a microscope after the floe had passed through the 
HIAC sensor (bottom) 
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size distribution data with data generated using a photographic 

technique (see Figure 53). The sensor used was the 600 /im sensor. 

Two things in Figure 53 are noteworthy. The first is that the HIAC 

severely broke the flocculated material. The second is that the floe 

being counted were significantly larger than the rating on the 

sensor. One would have anticipated significant floe breakage. 

Morris (1983) used a HIAC to measure size characteristics of 

flocculated kaollnlte. The sensor used was reportedly capable of 

measuring particles from 1 to 300 /un. There was apparently no effort 

made to check microscopically for breakup. This is interesting 

because the largest floe measured were less than 50 pm in size. 

Morris and Knocke (1984) in discussing this work state that, at low 

temperature, the iron appeared to function more efficiently as a 

coagulant than alum because it formed large floe which settled more 

efficiently. 

The work by Reed and Mery (1986), and the work by Morris and Knocke 

(1984) both highlight the fact that the researcher must be aware of 

the Instruments limitations. One measuring device which is 

available to the researcher for quality control monitoring, which is 

apparently seldom used, is the human eye. Let's consider the 

capabilities of the eye as a quality control device. Table 13 lists 

the resolution limit of the human eye at a standard 250 mm (10 

inches), as given by a number of sources. 
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Figure 53. Comparison of floe size distributions as measured by an 
electronic particle counter and by a photographic technique 
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Table 13. Resolution limit of the human eye 

Source Resolution limit (/im) 

Beck, 1924 169 
Needham, 1958 127 
Slayter, 1970 100 
James, 1976 70 
Rossauer, 1981 101 
British Standard, 1984 75 

James (1976) explains that under ideal conditions the resolution 

limit of the human eye at 250 mm is 70 pm. This is usually reported 

as 100 to 200 na to account for non-ideality. If one can focus on an 

object closer to the eye than 250 mm, the resolution is improved. 

Under ideal conditions a myoptic teenager can resolve 20 pm at 50 mm, 

but this is extremely unusual. The average point of nearest focus 

for a human changes as a person ages. Average values are; 70 mm at 

10 years old, 200 mm at 40 years old, and exceeding 250 mm between 40 

and 50 years old. Based on this a maximum floe size of 50 pm would 

not be visible for most people, and would certainly not be called 

large by anyone. This, for instance, would lead one to suspect that 

Morris (1983) may have been experiencing floe breakup without being 

aware of it. It is very possible that the data presented by Morris 

(1983) and Morris and Knocke (1984) were more indicative of floe 

strength, than of the equilibrium size distribution. 
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Awtomatic imag? enalyaig 

It Is clear that breakup is a serious concern when using an 

electronic particle counter, and yet It appears that few 

Investigators verify there results optically. It Is Interesting that 

Treweek (1979), after recognizing the potential for floe breakup In 

an electronic particle counter, verified his results with another 

electronic particle counter, stating: 

"Despite these recognized limitations the resulting particle 
counts and sizes were comparable to those achieved electronic 
particle counting and sizing, which unfortunately suffers 
from similar defects" 

It is obvious that the electronic particle counters which are 

commonly used to count and size flocculated material should be 

evaluated for floe breakup. If one Is to evaluate particle counting 

Instruments, one must have a standard against which to measure their 

performance. It is widely recognized in fine particle literature 

that the microscope is the yardstick by which all particle measuring 

systems should be measured (Murphy, 1984; Herdan and Smith, 1963; 

Allen, 1981; Yamate and Stockham, 1977; British Standard 3406, 1984; 

ASTM E 20-85, 1985; Kavanaugh et al., 1980). Kavanaugh et al. (1980) 

called the optical microscope an "essential technique" for the 

calibration of other methods. Groves (1980) said: "sizing particles 

with the microscope must be considered the only absolute method 

because the operator is directly involved". A number of researchers 

have reported using the microscope to calibrate particle counting 

Instruments or to check for floe breakage (Pandya and Speilman, 1983; 
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Swift and Friedlander, 1964; Tekippe and Ham, 1970; Blrkner and 

Morgan, 1968; etc.). Other researchers (Hahn and Sttumn, 1968b; Camp, 

1968) have simply elected to put: up with the tedium of using the 

microscope to gain the added confidence in their data. 

Particle counting and measuring techniques using the optical 

microscope also have limitations. The techniques main strength, 

operator involvement, is frequently also its main weakness. Problems 

which may arise due to operator involvement stem from: 

o Judgement errors in estimating size, 

o operator fatigue and boredom, 

o operator confusion when a large number of particles are 
present in a field of view, 

o time requirements. 

Because of these potential problems a number of fairly detailed 

standards have been developed for doing microscopic counting, e.g., 

British Standard 3406:Part 4, 1984; ASTH E 20-85, 1985; ASTM F 312-

69, 1986. These standards, in large part focus on minimizing the 

human error involved in counting and measuring particles. 

An option which has recently become available due to technological 

advances is fully automated image analysis (AIA) coupled with the 

light microscope. In AIA the operator selects the field to be 

counted, adjusts the image focus and contrast, and the instrument 
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then does all of the counting and categorizing without further 

operator Interference. Through the use of AIA the first three 

problems listed above are eliminated (Graf, 1977), and the fourth is 

greatly reduced as a concern. Kavanau^ et al. (1980) estimated 4 to 

8 hours per sample for optical microscope analysis. Through the use 

of the AIA this Is reduced to approximately 0.5 to 1 hour per sample. 

This compares to 10-45 minutes per sample with an electronic particle 

counter, depending on the sample preparation involved (Kavanaugh et 

al. 1980). 

Like electronic particle counting, light microscopy has its 

limitations. As noted by Kavanaugh et al. (1980), because the 

samples analyzed are small there must be a certain minimum 

concentration of particles per ml in the original sample for this 

technique to be practical. Kavanau^ does not give a specific lower 

limit. Table 14 contains sampling guidelines which have been 

extracted from the literature. 

Allen (1981) gives the percentage standard error of the mean size in 

a number distribution as 100/(n)^'^, where n is the number of 

particles measured. He states further that for particles containing 

a narrow range of sizes, this equation may be quite conservative. 

Murphy (1984) states that if 10 percent of the particles are in a 

single size class, and 0.5 percent accuracy is desired, 400 counts 

will probably be required. ASTH E 20-85 (1985) 
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Table 14. Ll^t microscope sample size requirements 

Source Counts required Accuracy specified 

Lieberman, 1984 100 
1000 
600 Allen, 1981 

British Standard 
3406:Part 4, 1984 Minimum 625 
ASTH F312, 1986 100 total 
Murphy, 1984 

+/- 10 % 
+/- 3 % 

statistically accurate 

2% 

Yamate and 
Stockham, 1977 

Harwood, 1977 

100 in mode 
10 in each class 
important to the shape 
of the PSD 

Minimum 100 
25 in mode 
10 in each class 
300-500 quantitative 
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suggests the standard uncorrected 95 percent confidence interval 

shown in the following formula, for n less than 30. 

ln"D"- 1.96 In a/(n)°'^ < InT < lnT+ 1.96 In a/(n)°-^ 

D ' - mean size in a log normal distribution 

a - standard deviation about the log mean 

n - number of particles measured 

The guidelines from ASTH F312 (1986) given in the previous table, 

state explicitly that the guidelines are applicable to both size 

distribution and number concentration. The other guidelines do not 

state explicitly that they are valid for determining number 

concentration. 

The sample cell used to hold the sample being counted, usually has a 

depth which is deeper than the microscope objectives depth of field. 

It is important to allow the small particles time to settle to the 

bottom of the cell (a uniform focal plane), before one counts the 

particles. Hahn and Stumm (1968b) reported loading sample cells, and 

then immediately taking photographs of the samples. The photographs 
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were then analyzed. This technique has potential to seriously under-

count the small particles. 

Another limitation which must be considered Is the resolution limit 

of the measuring system, which In this case Includes the light 

microscope and the ÂIA. The following table, Table 15, represents 

suggested practical ranges of application for the ll^t microscope. 

The guidelines in Table 15 are based on a large number of practical 

considerations, and do not necessarily represent an absolute 

limitation of the hardware. 

Table 15. Suggested range of usefulness for the light 
microscope in measuring particle size distributions 

Source Range (pm) Practical limitation (pm) 

Groves, 1980 1-1000 2 
Treweek and 
Morgan, 1977 0.2-400 
Allen, 1981 0.8-150* 
Murphy, 1984 0.8-20* 
Harwood, 1976 0.5-100 

* Above this size limit the authors recommended use of a 
magnifying glass. 

There Is, however, a real lower limit to the resolving power of the 

optical light microscope. This lower limit Is set by the size of the 

Airy disk produced by a given lens (Rossauer, 1981; Abramowltz, 1985; 

British Standard 3406, 1984). As light from a point on an object 

being Imaged, is passed through a lens it Is diffracted, and a spot 
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(or disk) is formed on the other side of the lens (Rossauer, 1981; 

Abrafflowltz, 1985). This is called point to spot imaging (Rossauer, 

1981). The higher the numerical aperture of a lens, the shorter the 

wavelength of the li^t passing through the lens; and, the more 

highly corrected the lens is the smaller the Airy disc produced. The 

diameter of the Airy disc can be calculated as follows (Rossauer, 

1981; Abramowitz, 1985); 

Where; 

d - Airy disc diameter in /tm 

A - wavelength of light in A 

N.A. - Numerical Aperture of the lens or system 

The diameter of the Airy disc produced, very closely approximates the 

optical resolution of the system. This is sometimes called the 

systems resolving power. The optical resolution of the system has 

been defined as the ability of an objective to separate clearly two 

points which are close to each other on a specimen (Abramowitz, 

1985). The numerical aperture referred to above may be either the 

N.A. of the objective or the N.A. of the combined optics of the 

microscope system. The lens aperture is used to calculate the N.A., 

unless the system aperture is smaller. The numerical aperture for 

the system depends on both the aperture (N.A.) of the objective and 



www.manaraa.com

191 

the aperture (N.A.) of the substage condenser, and can be estimated 

using the following formula (Abramowltz, 1985): 

„ . oblectlve condenser 
"A-system- 2 

The following table Is Intended to give the reader an appreciation 

for the physical limitation of the li^t microscope. The Table 16 

contains calculated values for the system resolution of the 

microscope used in this work, as well as the numbers given by Olympus 

for the same Instrument. 

British Standard 3406 (1984) specifies that the diameter of the 

smallest particle examined with any objective should not be smaller 

than 

d - 1.5/N.A. 

This criteria Insures that the diameter of the smallest particle 

examined will be 5 times the diameter of the Airy disc. It must be 

recognized that, if a particle smaller than this size is measured, 

there is a loss of accuracy, and the measurements eventually become 

more qualitative than quantitative. For a typical 20x objective, 

British Standard 3406 (1984) recommends a minimum particle size of 3 
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fan, and a minimum system magnification of 500x. 

Table 16. Optical microscope resolving power 

Lens Lens Condenser System Lambda Calc. Olympus 
Mag. N.A. N.A. N.A. (A, /im) Res. Res. * 

(pm) (fim) 

4 0.13 0.8 0.46 0.55 2.58 2.58 
10 0.30 0.8 0.55 0.55 1.12 1.12 
20 0.46 0.8 0.63 0.55 0.73 0.73 
40 0.70 0.8 0.75 0.55 0.48 0.48 

^ Olympus's resolution comes from page 16 of the Olympus BHS 
instruction manual. The above calculations assume that a green 
monochromatic filter is used. 

Another area of concern, in working with a light microscope, is the 

microscopes limited depth of focus, sometimes called the focal depth. 

This is the vertical distance between the upper and lower limits of 

sharpness in the observed image. Some typical values are given in 

Table 17 (Olympus, 1985). 

This limitation can lead to a significant loss of accuracy when 

performing quantitative measurements on irregular objects whose 

vertical dimension is larger than the depth of focus. 
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Table 17. Depth of focus as a function 
of magnification 

Objective lens Depth of 
Magnification Focus (foa) 

4 125.4 
10 22.1 
20 7.6 
40 2.7 

The last area which impacts the reliability of the measurements Is 

the resolution of the Image analyzer. This Is obviously going to 

vary with the hardware and software of a specific system. It should 

be noted however, that the AIA should have, as a minimum, a resolving 

power equal to that of the microscope being used as a primary sensor. 

Figure 54 shows the resolution of the Lemont OASYS AIA as a function 

of system magnification (Lemont Scientific Inc., 1984). 

The basic components of the AIA system are shown in Figure 55. A 

ll^t microscope is fitted with a video camera. The computer system 

contains a hardware board called a "frame grabber" which takes the 

image from the video camera and digitizes It. The digitized image 

can then be edited from the keyboard, using various additions, 

subtractions, inversions, and filters. The final edited digitized 

image is analyzed by the computer system, and the information Is 

stored to magnetic disk for future retrieval. 
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Magnification VS. 
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Figure 54. Magnification versus the smallest Increment the Lemont AIÀ 
can measure, which Is roughly equivalent to the smallest 
feature resolved; log-log plot 
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Figure 55. Schematic of the fully automatic image analysis system (ÂIA) 
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The computer Is only capable of differentiating between intensities 

of gray. It Identifies and measures objects based on the contrast 

between the object and the background. Typically there are 256 

levels of gray, from black at level zero, to white at level 256. 

Figure 56 illustrates how the image detection operates (Graf, 1977). 

The height of the pulse Is proportional to the gray level, and the 

width of the pulse is proportional to the object size. The ideal 

signal, from a contrast point of view, would be a white background, a 

black object, or vice versa, and distinct edges on the object. This 

is almost never the case. Usually the background is dark gray, the 

object is light gray and there is a transition zone of varying shades 

of gray at the objects boundary, making the edges fuzzy. The 

operator must select and set a threshold grey level for the Image 

which is representative of the actual object boundary. Once this 

threshold level is set the AZA perceives a crisp image, and can 

continue with the analysis of the image. 

The analysis is shown schematically In Figure 57. The computer scans 

the digitized image one line at a time, keeping track of detected 

points. When a detected point is found on a line the computer looks 

back at the proceeding line, to see if the point belongs to a 

previously detected object. This is referred to as "look-back 

logic". A summary of the object information is placed in the 

computer file on the line after the last detect point on an object. 

This summary contains all of the key Information for all of the scan 
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Figure 56. Computer detection of a feature In the digitized Image 
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Figure 57. Computer measurement of a feature in the digitized image 
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lines intersecting the object (Graf, 1977). Based on this 

information the image analysis software can estimate the projected 

area, perimeter, angle of repose, length to width ratio, etc., and 

can divide the particles into classes based on this information. 

When the physical limitations have been considered, and determined to 

be acceptable, a number of practical considerations must be dealt 

with. It is necessary to select a systematic means of randomizing 

the sample cell to eliminate possible biases in the measuring 

processes (British Standard 3406, 1984; Murphy, 1984; ASTH E 20-85, 

1985; ASTH F312-69, 1986). It is also necessary to consider how the 

data will be reported. A specific measure of particle size must be 

selected from the many parameters available, e.g., Feret's diameter, 

Martin's diameter. Maximum linear diameter, minimum linear diameter, 

projected area diameter, projected perimeter diameter. The most 

frequently used diameter is the projected area diameter (Stockham, 

1977; Allen, 1981). Allen (1981) notes that the projected area 

diameter is the diameter most representative of the actual size of 

the particle. The projected area diameter is the diameter of a 

circle whose area is equal to the projected area of the particle. 

This is also called the equivalent circular diameter. 

Once the ground rules for collecting the data have been established, 

one must decide how to best present the data. As pointed out by a 

number of authors, notably Lawler (1987), and Reed and Mery (1986), 

the usefulness of the data can be maximized by presenting it in a 
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format which yields the maximum Information with the minimum of 

effort. If one is interested in the rate at which primary particles 

are being removed from the size range of inefficient removal (1-10 

urn), the number concentration may be the best way to present the 

information. If one is interested in maximizing the operation of the 

sedimentation tanks, or optimizing the length of filter run by 

producing a specific size of floe, the volume or mass distribution 

may be the best way to present the data. 

Dentel et al. (1986) performed a literature evaluation of the 

Coulter-type counter, the HIAC counter, and the light microscope. 

Based on this literature survey it was suggested that neither the 

Coulter-type counter, nor the light microscope were suitable for 

routine use in the water treatment process evaluation, but they felt 

that the HIAC deserved further consideration, based on: 

o Dentel et al. (1986) recommendation, 

o the availability of the HIAC in the laboratory, 

o the recommendation, cited earlier, of the light microscope 
as the only direct particle measurement technique. 

The HIAC and the light microscope coupled with the AIA were both 

evaluated for use in this work. 
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Results from Flocculatlon Modeling Studies 

Population balance modela 

Any discussion of flocculatlon modeling must start with the work of 

Smoluchowskl In 1917. This work dealt with flocculatlon of micron-

sized particles by Brownlan motion and laminar shear flow, and did 

not consider turbulent flocculatlon. The work of Smoluchowskl is 

still the basis for all population balance flocculatlon modeling. 

Many of the assumptions Smoluchowskl found necessary are also common 

to the population balance models currently in use. The following 

assumptions apply to all of the population balance models discussed 

unless otherwise stated: 

o the initial particle size distribution is mono-dispersed 

o all particles and aggregates are assumed to be hard spheres 

o aggregates of size k are formed by the collision of particles of 
the size 1 and j,(l+j-k), and aggregates of size 1 are destroyed 
by collisions with particles or aggregates of any size 

o a single particle or aggregate is assumed to be the fixed 
collector and the other particles approach the collector particle 
and upon contact become permanently attached to the collector 

o During aggregation volume is conserved, so a particle of radius 1 
and a particle of radius j form a particle with radius k. The 
particle with radius k will have a volume V% - + V,. This 
implies that the aggregate density is not a function of radius. 

o no allowance is made for interaction between the particles before 
contact of the particles 

Ernst (1986) gives the Smoluchowskl coagulation equation, describing 

the time evolution of the number concentration, in the following form 
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°k - 1/2 Cj 

The variable "c" represents number concentration of particles. K^j Is 

referred to as the collision kernel. The kernel contains all of the 

actual physics in the population balance model (Racz, 1986; Julllen 

and Botet, 1987). This takes care of details such as: 

how the collision cross section depends on the size and 
mobility of the aggregating material, 

the type of flow field driving the flocculatlon process, 

and as our understanding grows we may also be able to 
include information on floe structure in this term (more 
about this a little later). 

Smoluchowskl developed equations which represented aggregation driven 

by two different mechanisms. The first process he investigated is 

coagulation when the transport due to bulk flow mechanisms is 

unimportant. This is coagulation due to Brownlan motion. If the 

particles are compact and the driving mechanism Is Brownlan motion 

the kernel is 

Kjj — 4*Dij+ aj) 

D^j -  (D^ +  D j ) ,  which is the combined diffusion coefficient for 

particles 1 and j. The variables aj^, aj are the radii of the 

colliding spheres. 
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Upon substitution of the kernel into the original equation, the 

following discrete form of the equation results: 

1-k-l «0 
dcjj/dt - [kT/3/i] S CiCj(Rij) - [2kT/3/i]ciç S 

1—1 1—1 
J-k-1 

The first term represents particles growing out of the 1 and j 

classes and into the k class. The second term represents particles 

growing out of the k class into some other class. The term 

Rlj -(*1 + aj)(l/a£ +l/aj) 

represents the collision sphere of the interacting particles. 

The second process Smoluchowski investigated was coagulation due to 

bulk flow only. In addition to the previous assumptions this model 

also assumed that the particles followed the streamlines of the flow 

field. Smoluchowski assumed a laminar shear field with the form % -

(o, o, 7z). If the particles are compact and the driving mechanism 

is a laminar shear field the kernel is expressed as: 

Kij - 4/3(du/dz) 

The shear gradient, du/dz, is frequently called G. Ay - (a^ + aj), 

which is the collision radius for particles 1 and J, can be re

written in terms of the particle volume of a primary particle. A^j 

then becomes aj^*(c£^/^+Cj^/^)^, where a^ is the radius of the primary 

particle and 1 and J are the number concentration of c^ and Cj size 



www.manaraa.com

204 

particles respectively. Laminar shear flocculatlon is then described 

by an equation of the following form: 

i-k-1 . " . 
dcjj/dt - [2G/3] Z c^cj (a^ + aj)^ - 2 Z c^cj^Ca^ + a^)^ 

1—1 1—1 
j-k-l 

Once again, the first term represents particles growing Into the k 

size class, and the second term represents particles growing out of 

the k class and Into another size class. Without a breakup term In 

the model, as time approaches Infinity, all of the particles will 

form a single macro-floe. In a situation where the bulk flow Is 

driving the flocculatlon this will not happen, the floe will reach a 

maximum size and then break. The maximum size of the floe will be 

determined by the strength of the particle bonds In the floe and the 

stress exerted on the floe by the bulk flow. The breakup terms will 

be the same as the two terms Just presented, except that the sign on 

them will be reversed. That Is particles will be growing Into the 

class size due to breakage of larger floe, and particles will be 

leaving the class size due to break up to smaller floe. Because 

these models assume a mono-dispersed suspension, neither of them 

Include a differential sedimentation term. 

Researchers that followed Smoluchowskl assumed that the shear and 

brownian terms were additive. Swift and Friedlander (1964) developed 

the population balance equations again from a rigorous theoretical 
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base, and achieved results which were consistent with those of 

Smoluchoskl. They then showed experimentally that: 

o Brownian and shear flocculatlon appeared additive 

o Between G - 1 to 80 sec'^ and time - 0 to 100 minutes, the 
theory does an excellent Job of predicting the coagulation 
kinetics of a 2 x 10° partlcles/cm* suspension of DOW 
polystyrene latex spheres In a laminar shear flow. 

From the brief discussion of Brownian and laminar shear flow 

flocculatlon in Schowalter's paper (1982) it is obvious that even 

these relatively well defined systems are very complex. The 

difficulty in solving the equations describing the physical system 

are enormous when more than one of the following factors, are 

included: 

o poly-dispersed particle size distribution 

o hydrodynamlc forces 

o colloidal interactions 

o change of the floe structure with floe diameter. 

Van den Ven and Mason (1977) went a step further and Included 

hydrodynamlc and Interparticle forces in the shear flocculatlon 

model. Based on their work, they reinterpreted Swift and 

Frledlander's (1964) data and concluded that Brownian and shear 

flocculatlon are not additive. They showed theoretically that the 

periklnetlc flocculatlon rate was independent of 6 and a constant. 

The orthoklnetlc flocculatlon capture efficiency (a), due to 
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hydrodynamlc Interaction, Is not constant, but is a function of G, 

and decreases as G increases. Their interpretation of Swift and 

Friedlanders data showed a decreasing by 10 % with an increase of G 

from 20 to 80 sec"^. Theory predicted a reduction in efficiency of 

20 percent. 

Speilman (1978) brings out a number of interesting characteristics of 

the Smuluchoski type model by including hydrodynamic and 

interparticle effects. It is pure serendipity that these two effects 

tend to cancel each other out. Because of this the perikinetic model 

gives a very good description of doublet formation. In orthokinetic 

shear flocculation the situation is more complex, and there are some 

interesting results: 

o Theoretical results show the frequency of doublet formation 
not strictly proportional to G, as predicted by 
Smuluchowski in the absence of repulsion, but is 
proportional to G" *2. 

o When both attraction and repulsion are important, i.e., 
partially destabilized particles, the possibility exists of 
a suspension which will flocculate at high (primary minimum 
flocculation) and low (secondary minimum flocculation) 
shear rates, and be stable at medium shear rates 

o and, once again, the assumption of additivity of Brownian 
and shear flocculation are in disagreement with rigorous 
results. 

The effect of hydrodynamic forces on shear flocculation have also 

been considered by Goren (1971), Honig, Roebersen, and Wiersema 

(1971), and Adler (1981). Honig, Roeberson, and Wiersema's results 
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completely agree with those of Spellman. They found that the 

hydrodynanlc Interaction reduced the rate of rapid coagulation by a 

factor of 0.4 to 0.6, depending on the assumed Hamakers Constant. G 

values of 3 to 810 sec'^ were considered. Adler's (1981) work was 

more theoretical, and more general In nature, but It substantially 

agreed with the earlier work of Spellman (1978). 

Gregory (1986) provided a recent discussion of hydrodynamlc effects 

In shear flocculatlon, including the following points of interest. 

For equal size particles, the magnitude of the interaction depends on 

the particle size and the shear rate. This interaction may result in 

a factor of 10 reduction in the actual flocculatlon rate as compared 

to the rate predicted by the Smuluchowskl equation. For unequal 

sized particles this effect is even more significant. For a 10 /im 

and a 1 /im particle under shear, the distance of closest approach is 

predicted by theory to be 1.4 /xm. Over this distance normal 

colloidal forces would not cause flocculatlon. This 1.4 ftm assumes 

no Brownlan motion, solid spheres, and no surface roughness. 

Relaxing any of these assumptions will reduce the 1.4 pm. 

Nevertheless, this "hydrodynamlc gap" is probably always significant 

in shear flocculatlon. 

In the turbulent flow environment there is an added degree of 

difficulty, because the flow field which is driving the flocculatlon 

is poorly defined in the mathematical sense. In other words if one 
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attempts to write a set of equations to define the flow field, one 

ends up with more unknowns than equations. Since It Is not possible 

to write a closed set of equations which describe the flow field, it 

Is necessary to make some type of simplifying assumption. For 

Instance, It Is common to assume that Taylor's hypothesis is valid to 

facilitate the solving of the coagulation equations. Taylors 

hypothesis says that the velocity fluctuations at a single point in 

space can be Imagined to be caused by the whole turbulent flow field 

passing that point as a "frozen" field (Hinze, 1975). This provides 

a means of sampling a single point over time and then estimating the 

turbulence over space. It is also wrong, particularly in the non-

homogeneous flow field of a laboratory scale mixed reactor. This is 

unfortunate since it is a convenient assumption and we do need some 

means of getting a handle on the flow field. 

Camp and Stein (1943) where early leaders in the effort to extend 

Smoluchowski's work Into the turbulent flow region. They took 

Smoluchowski's solution for the well defined laminar shear flow, and 

replaced the velocity gradient (du/dz) with a root mean square 

velocity gradient, and called the rms velocity gradient G for the 

turbulent flow field. They did this by defining an absolute velocity 

gradient at a point, Gp. 

Gp - [ (du/dy + dv/dx)^ + (du/dz + dw/dx)^ + 

(dv/dz + dw/dy)^ 
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where u,v,w are velocity components In the x, y, and z directions 

respectively. For a Newtonian fluid this can be reduced to 

G - (e/i/)^/^ 

where e Is the total energy dlsslpated/unlt time/unit mass, and v Is 

the kinematic viscosity. This expreslon for G Is then placed 

directly Into the model previously given for laminar shear 

flocculatlon to yield a model for turbulent flocculatlon. 

The results of Camp and Stein (1943) are still widely used in 

flocculator design, and it is noted that they give results which are 

adequate for design purposes. However, this approach does not 

provide an adequate tool for pursuing basic research. The main 

problem with the model is that it does not specifically include many 

important phenomena which could have an Impact on the rate and 

efficiency of flocculatlon. Consider for Instance some of the 

following: 

o eddy size distribution and the relationship between eddy 
size and the transport of floe of various sizes 

o DVOL forces, and the Impact of primary minimum flocculatlon 
vs secondary minimum flocculatlon 

o effect of coagulant chemistry and precipitate surface 
chemistry 

o effect of coagulant and system chemistry on floe strength 

o non-Isotropic, non-homogeneous nature of the flow field (le 
spatial variation in the flow field) 
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o Mechanisms Involved in breakup (surface erosion vs 
fracture), and the dependence of the dominant breakup 
mechanism on floe size and flowfield characteristics 

o particle and floe size distributions are usually poly-
dispersed and frequently multi-nodal 

o particle and floe structure 

o hydrodynamic forces. 

Since these effects are not included explicitly in the model, they 

are all lumped into whatever parameters are used to fit the model to 

the observed data, such as a sticking factor, and a breakup factor. 

Because of this it is difficult to determine the importance of the 

individual phenomenon in flocculation process. 

Many attempts have been made to improve on Camp and Stein's 

generalization of Smoluchowski's model. The following paragraphs 

will touch on a few of these just to demonstrate the breadth of the 

research since Camp and Stein. 

Speilman (1978) noted that there existed no rigorous analysis 

accounting for hydrodynamic interactions between particle encounters 

in turbulent flocculation. He then suggested that his results for 

laminar shear flow can be used as a first approximation. Even this, 

however, is non-trivial. 
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Saffman and Turner (1956) developed a model for turbulent 

flocculatlon of rain drops In a cloud. Interestingly enough, even 

though their model was much more rigorously derived, their model 

differed from Camp and Stein's model by only a constant. Camp and 

Stein's model contained a constant 1.333, and theirs contained a 

constant 1.294. One of the fundamental assumptions made in 

developing their model was that the particles being flocculated where 

much smaller than the Kolmogorov micro-scale of turbulence. That 

would mean that at 25 *C the particles must meet the criteria shown 

in Table 18 for the model to be valid. 

Table 18. G-value and corresponding limiting particle size 
for the Saffman and Turner model; this size is 
the Kolmogorov Microscale of Turbulence 

G-value Limiting Size in (tm 

10 sec'l 300 
50 sec'l 134 
100 sec'l 77 

In the context for which the model was developed the particles of 

interest were one or two orders of magnitude smaller than the 

Kolmogorov micro-scale. In water treatment the energy input is 

usually tapered from 100 sec'^ to 20 sec'^, and the floe can easily 

be larger than the corresponding micro-scale. The primary particles 

found in water treatment will usually fulfill this criteria, since 

they are usually less than 10 pm. This model may have a region of 

applicability, before large floe have been formed in the reactor. 
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Dellchatslos and Probsteln (1975) addressed the issue of floe larger 

than the microscale, but in order to do so they assumed the existence 

of the inertial subrange of turbulence. As is pointed out by 

Spielman (1978), it is very unlikely that the inertial subrange 

exists in a flocculation system, since it is stirred very gently, and 

an eddy Reynolds number in the range of 10^ to 10^ is necessary for 

the existence of the inertial subrange. Delichatsios and Probstein 

(1975) also compared theoretical flocculation rates for monodispersed 

and polydispersed suspensions with the same floe volumes, and showed 

that polydispersness results in a decrease in the coagulation rate. 

This means that flocculation models which assume monodisperse 

suspensions will over-estimate the flocculation rate in most natural 

systems. It is also noted that in comparing the flocculation rates 

of the mono- and poly-dispersed suspension, these authors did not 

consider differential sedimentation. This omission may be very 

important to the validity of their results. 

Lawler et al. (1980) also investigated the difference in treatment 

plant efficiency between monodispersed and polydispersed systems with 

the same floe volume. These authors performed a simulation using a 

Smoluchowski type model assuming additivity of Brownian and shear 

flocculation. They concluded that the process performance was worse 

for the homogeneous suspension than for the suspension with a broad 

particle size distribution. 
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Hudson (1965), starting from the work of Camp and Stein (1943), made 

the assumption that the diameter of the floe (d^) are so large that 

the primary particle diameter (d^) can be safely Ignored. From this 

assumption he then derived a model in which total particle reduction 

Is a function of floe volume. 

N^/NG - E-^VGT/* 

V X Volume of floc/unlt volume of water 

Ng - suspended matter originally present 

- free or unflocculated matter at time "t" 

^ - sticking factor 

In Hudsons words "The most significant point is that the rate of 

entrapment of suspended matter in floes is dependent upon the volume 

of the floe, not on the number or size of the floe particles. 

Since Hudson developed this model a number of investigators have used 

it (Camp, 1968; Francois, 1988). It appears that for flocculation in 

the sweep floe region this model produces good results. In the sweep 

floe region large metal hydroxide precipitates form early in the 

flocculation process, and these precipitates tend to dominate the 

kinetics of the flocculation process. However, in flocculation in 

the A/D region, the fundamental assumptions upon which this model are 

based are violated for a significant length of time. For the early 
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portion of the flocculatlon process, the number concentration of 

larger floe Is too small to have an Impact on the flocculatlon 

kinetics. Francois's (1988; Francois and Van Haute, 1983) work is 

entirely in sweep floe, so it will not be discussed further. 

Lawler, Izurieta, and Kao (1983) proposed a model which accounted for 

flocculatlon by differential sedimentation as well as by shear and 

Brownian mechanisms. However, it is hard to know how to interpret 

the results since the flocculatlon conditions were quite unusual. 

Monodispersed latex spheres in extremely high concentrations (200 to 

600 mg/L) were flocculated at modest flocculatlon rates (G - 25 to 44 

sec'l) for very long times (15 hours). Due to the unusual materials 

and conditions, it is hard to know what to make of the end results. 

Lawler (1989) presented theoretical work comparing the flocculatlon 

of mono- and poly-dispersed systems using a similar model. This 

model also accounted for hydrodynamic interactions and intermolecular 

forces. Based on theoretical considerations, Lawler demonstrated 

that, in a poly-dispersed suspension, differential sedimentation 

becomes the dominant mechanism in many practical systems. He also 

showed that the shear flocculatlon mechanism is much less important 

than traditionally believed. 

Breakup It is noted that none of the investigators to this 

point have included breakup in their models. Kim and Glasgow (1986) 

noted that since neither aggregation or disintegration can be 
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disregarded In a flocculatlon tank, both phenomena must be considered 

by any modeling procedure striving for physical realism. They also 

asserted that floe susceptibility to hydrodynamlc stress effects Is 

largely dependent upon the nature of the coagulant. Lawler, 

Izurleta, and Kao (1983) considered breakup briefly and then left It 

out of their model. Spellman (1978) discussed it, and developed the 

frame work for including it, but took it no further. In Spellman's 

words : 

"The difficult task is to determine the specific form that the 
breakup function will have in a given situation." 

Harris (1966), and Harris, Kaufman, and Krone (1966) presented a 

really nice piece of work on flocculatlon modeling including breakup. 

Unfortunately in order to produce a useable model, it was once again 

necessary to make a number of simplifying assumptions. The final 

product looked very much like Hudson's (1965) model, and the 

verification was all carried out in the sweep floe region. Some of 

the problems which Harris found Insurmountable in solving the general 

model were: 

o lack of information on the floe breakup mechanism 

o lack of information on the floe structure 

o inability to account for the non-homogeneity of the 
turbulent flow field in the general rate equation 

o inability to measure the number concentration of the 
unfloceulated primary particles. 
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The mechanism of floe breakup has long eluded researchers, and in the 

past 20 years a great deal of effort has been but into this topic. 

Hlnze (1955) dealt with the fundamental mechanisms involved in the 

splitting of a liquid droplet in a dispersion process. Hlnze 

discussed three types of deformation mechanisms (e.g., lenticular, 

cigar-shaped, and bulgy deformation) and their application to 5 

different types of flow fields. In lenticular deformation the 

droplet Is flattened forming the shape of a contact lens. The 

breakup depends on the magnitude and duration of the force applied to 

the drop. If the magnitude and force are sufficient, the drop forms 

a torus which then breaks into many small drops. Cigar-shaped 

deformation forms a prolate ellipsoid, then a long cylindrical 

thread, and finally the structure breaks up Into droplets. Bulgy 

deformation takes place when the surface of the droplet Is deformed 

locally, due to local pressure differences at the Interface. Bulges 

and protuberances occur, and parts of the drop finally separate. In 

droplet breakup the effect of surface tension is important. If the 

deformation is not to large the surface tension restores the drop to 

its spherical shape. This restorative mechanism is not present in a 

floe, so some of the concepts presented by Hlnze need to be tempered 

with this consideration. It is none the less important to be aware 

of Hlnze's work, because it provides the basis for much of the work 

that followed. The dominant mechanism in droplet formation in a 
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turbulent flow field Is a function of droplet size. In droplets 

equal to or larger than the Kolmogorov mlcroscale, the dynamic 

pressure forces of the turbulent motion are the factor determining 

the size of the largest drops. It also appears from the discussion 

that below the Kolmogorov mlcroscale, the viscous stresses will be 

the dominant breakup mechanism. This last idea is never explicitly 

stated by Hlnze. 

Thomas (1964) studied the turbulent disruption of floe in small 

particle size suspensions. This work was performed at solid 

concentrations in excess of 5 percent solids by weight. Thomas 

mentions the following floe deformation modes which may lead to floe 

disruption: 

o elongation into prolate spheroids under the action of 
simple shear (Cigar-shaped deformation), 

o bulbous distortion by irregular dynamic pressures (bulgy 
deformation), 

o for sufficiently large ratios of floe viscosity(?) to 
suspending medium viscosity the floe might retain a roughly 
spherical shape while undergoing rotation and particle 
rearrangement. 

In this last case, according to Thomas, rupture could only occur 

through the imposition of shear stress across the floe which would 

exceed the yield stress. The first two cases may work together in a 

turbulent flow field. The velocity gradient may extend the floe, 

while simultaneously applied dynamic pressure differences will tend 
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to disrupt the extended floe. Thomas noted that, floe 

characteristics must be precisely defined to discuss floe breakup. 

Thomas's experimental work was performed at such high solids 

concentrations and velocity gradients that it Is doubtful we in water 

treatment flocculatlon can draw much insist from his experimental 

work. 

Michaels and Bolger (1962) worked with kaolinite suspensions, and 

found that floe yield stress was a function of solids concentration. 

At less than 5 percent solids by weight, the yield stress Increased 

as a function of the solids concentration squared, while at greater 

concentrations it Increased at an even faster rate. The high solids 

concentrations Used in this work probably make the experimental 

results reported of little value in the current study, but it does 

point out that floe strength may be a function of solids 

concentration. 

Hannah, Cohen, and Robeck (1967a) performed floe strength 

measurements using a Coulter counter to break the floe. They 

flocculated 5, 15, and 50 mg/L kaolinite suspensions with 15 mg/L 

alum. The dilution water used was distilled water, buffered with 50 

mg/L sodium bicarbonate. The floe were formed by mixing the 

suspension for one hour in a modified couette flow reactor at a G of 

50 sec'l. The typical pH for this work is given as 7.6, which would 

Indicate sweep floe. They based their strength comparisons on the 
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particle size remaining after the flocculated suspension was passed 

through the Coulter counter orifice. The results are as follows: 

Alum Dose Kaolinlte Modal Maximum 
mg/L as mg/L Size Size 
Alum (Aim) ( / m )  

15 0 6 9 
15 5 8 11 
15 15 11 14 
15 50 11 14 

They also compared the results of holding the clay constant and 

varying the alum dose; 5, 15, and 25 mg/L. The 5 mg/L dosage (the 

lowest alum to solids ratio that was tested) formed the largest 

number of large floe and formed floe better able to resist 

fragmentation, but the formation rate was quite slow. Floe strength 

was also a function of pH. Floe were grown at pH values of 7.2, 7.6, 

and 8.1. The floe grown at 7.2 were the strongest, but took a 

relatively long time to grow. The floe grown at pH - 7.6 were 

considered optimal because, althou^ they were weaker, they grew much 

faster. There was very little flocculatlon at pH - 8.1 The authors 

listed some relative forces of attraction which are of Interest; 

Chemical bonds - 50 to 100 kcal/mole, hydrogen bonds - 3 to 10 

kcal/mole, and van der Waals forces - 1 to 2 kcal/mole. 

Camp (1968) reported on the strength of iron hydroxide floe formed in 

the sweep floe region (15 mg/L ferric sulfate @ pH - 6.0), in the 

absence of other particles. The floe were formed and then exposed to 
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an Increased velocity gradient. The size of the particles remaining, 

as measured using a microscope, Indicated the relative strength of 

the floe. The strength of the floe was quantified by assuming that 

the surface energy of the floe could be equated with the shearing 

energy In the water volume occupied by the floe at the point of 

Impending destruction. Camp found that In a blender with a G of 

12,500 sec'l It was possible to prevent formation of floe larger than 

3 /im, and to breakup preformed floe to particles smaller than 3 fim. 

Camp estimated that the floe strength of the floes interpartlcle 

bonding was on the order of 4.8 x 10"^ kcal/mole. If one assumes 

that the van der Waals attraction Is on the order of 1 kcal/mole, 

then we are dealing with a bond 100,000,000 times weaker than a van 

der Waals bond. He notes that the particle bond strength Is probably 

underestimated due to the non-homogeneous nature of the turbulent 

flow field, nevertheless, the estimate will serve as an Indicator. 

Assuming spherical floe and a constant value of Interfaclal tension, 

the maximum floe size should vary Inversely with the mean velocity 

gradient In the reactor. The theoretical and actual data are 

presented below: 

G , Theoretical Actual 
Sec-1 Max Floe Size Max Floe Size 

(um) (um) 

500 240 160 
3,800 31 <3 
12,500 9 <3 
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Camp suggested that the deviation of the actual from the theoretical 

was due to the decrease in interfacial tension as the floe become 

larger and trap more water. This would suggest that the effects of 

floe structure are significant. 

Tomi and Bagster (1977) looked at the theoretical considerations in 

turbulent agitation. They note that floe rupture by Instantaneous 

pressure differences on opposite sides of the floe is only 

theoretically valid for floe in the size range where inertlal effects 

dominate. That is for floe larger than the Kolmogorov microscale. 

For smaller aggregates, viscous effects are significant, and breakup 

may be due to local velocity gradient effects at the floe surface. 

The results for turbulent breakup in this size range are analogous to 

the results for simple shear flow. He also noted that floe 

disruption due to the interstitial flow is not reasonable because 

interstitial flows have been found to be very small by other workers. 

Boadway (1978), working with alum and clay, noted that if the 

strength of the bonds between particles is independent of size, and 

the equilibrium floe size is shear rate dependent, then there must be 

structural differences in the larger floe. Their photographic 

evidence shows that the larger the floe, the more tenuous the bonds 

become, with evidence of weak spots. 
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Tanbo and Hozunl (1979) plotted log of max floe diameter vs log 

energy dissipation, In a clay-alumlnum floe system. These plots were 

linear over the pH range investigated; pH - 6.5 to 8, exhibiting 

Increasing size with decreasing energy dissipation. The Kolmogorov 

microscale was also plotted. As the pH Increased the maximum floe 

size also increased. At a pH level of 6.5, the maximum floe size was 

below the microscale over most of the mixing intensity range. All of 

the maximum floe diameters were close to the microscale, so the 

authors assumed that the conditions of the viscous subrange of 

isotropic turbulence held. According to previously reviewed work, 

this would imply failure due to viscous forces. 

Hatsuo and Unno (1981) performed a theoretical study of forces acting 

on floe and then verified the results using alum and clay at a pH of 

7. They drew the following conclusions: 

o surface shear is the predominant floe rupture mechanism, 
not density differences between the floe and the 
surrounding fluid. 

o based on floe strength analysis, the optimum coagulant 
dosage is smaller than the dosage which produces minimum 
residual turbidity. 

Pandya and Spellman (1983) studied the breakup characteristics of a 

kaollnlte and ferric hydroxide floe system over a range of G values 

(60 to 400 sec'l). Over this range, the average number of daughter 
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floe resulting from a floe breakup was 2.5. It was hypothesized that 

this number would Increase slowly as the floe diameter Increases. 

Glasgow and Hsu (1984) performed a breakup study using kaollnlte and 

a polyacrylamlde. The system was flocculated for 20 minutes at a G 

of 53 sec'l, then for three minutes the flocculation intensity was 

increased to 224 sec'^. The increase in mixing intensity did not 

cause an increase in the number of primary particles, but it did 

cause a decrease in the number of large particles. Based on this, 

the authors concluded that the floe has a multi-level structure, and 

rather than being broken down to primary particles it is being 

reduced to first or second level aggregates. 

Francois and van Haute (1983), working in an alum-kaolinite system, 

determined that the floe had a four level structure. The structure 

consisted of primary particles, flocculi (small floe), floes (made of 

aggregate flocculi), and floe aggregates. Each level above the 

primary particles is a little bit weaker. When the mixing intensity 

in the reactor is increased the flocculated material will break until 

a floe structure is reached which has sufficient strength to stand 

the stress. 

Clark (1985a), working in an idealized liquid-liquid system, 

presented evidence that breakup occurs only in the near region behind 

the impeller, and does not occur in the bulk of the flowfleld. 
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Modela including braakuo A number of Investigators have 

attempted to include breakup concepts in their modeling efforts. 

Argaman and Kaufman (1968,1970) sought to include breakup in their 

model throu^ the surface erosion mechanism. Their data did suggest 

that the breakup experienced was consistent with the viscous 

dissipation subrange. This, however, does not necessarily imply 

surface erosion. They also tried to incorporate the effect of the 

turbulent structure in their model by relating the turbulent energy 

spectrum to an effective turbulent diffusion coefficient for the 

particles. The experimental verification was performed in the sweep 

floe region using 25 mg/L of alum and 25 mg/L of kaolinite. 

Ives (1978) and Ives and Bhole (1973) introduced breakup by floe 

rupture into their flocculation model. They arbitrarily limited the 

floe diameter to 49 units, and then using computer simulation 

explored the impact of various breakup rules. The following breakup 

rules were considered: 

1 growth beyond 49 restricted by not allowing collisions to 
occur which would result in a combined size greater than 49 

2 aggregates which form and exceed 49 are immediately broken 
into two equal parts and returned to the flocculation 
process 

3 same as 2 but broken into 3 equal parts 

4 same as 2 but broken into 4 equal parts. 
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It Is Interesting that the different breakup rules had a major Impact 

on the equilibrium particle size distribution and on the process 

kinetics. The various breakup rules lead to the following limiting 

sizes (by limiting size Ives refers to the mode of the PSD): 

Breakup Rule Limiting Size (units) 

1 49 
2 36 
3 21 
4 18 

Ives could give no explanation for these limiting values. The 

breakup rules not only provided progressively smaller sizes, but also 

provided progressively better primary particle removal. The kinetics 

of a polydispersed (trimodal) system, were also simulated and showed 

very little difference from the monodispersed system. A simulation 

was also done in which contacts were restricted to a particles of 

similar size; 0.8<r£/rj<1.25. This resulted in poorer flocculation, 

with an increase in the number of particles remaining in the 1-1 to 

10 /im size range. 

Ives and Dibouni (1979) attempted to verify experimentally the 

simulation results of Ives and Bhole. They presented a number of 

Interesting results. Up to a G of 10 sec'^ both perlkinetic and 

orthoklnetic flocculation are important. The perlkinetic data fit 

the theoretical model well. The orthoklnetic data are qualitatively 
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in agreement with the theory; higher velocity gradients and more time 

produce more flocculatlon. The authors, however, felt that 

quantitative comparisons would have to wait for better data on floe 

structure, specifically porosity relationships. 

Flow field homogeneity Tanbo and Hozumi (1979) stated that 

because of the uneven energy distribution In the reactor, referring 

to the hl^ energy dissipation rate in the vicinity of the impeller, 

only 10 to 20 percent of the energy put into the reactor is available 

for flocculatlon. They accounted for this in their modeling by 

multiplying e by 0.10 to 0.20, and calling it the "effective mean 

rate of energy dissipation". 

Koh, Andrews, and Uhlherr (1984) addressed the non-homogeneous nature 

of the turbulent flow field in modeling orthoklnetic flocculatlon. 

They did this by modeling the flocculatlon of a fully destabilized 

suspension in a compartmentalized reactor. The reactor was divided 

into a number of compartments and a volume averaged shear rate was 

used to model the flocculatlon process. Using energy dissipation 

values from the literature, they considered 2, 3, and 30 compartment 

models. The various multi-compartment models all gave very similar 

results, therefore it was concluded that there was little advantage 

in considering more than two compartments (impeller region and bulk 

flow region). The authors made a number of noteworthy points. In 

general, the collisions of particles from 1 to 20 fim are invariably 
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caused by laminar shear mechanisms, even though the general flow 

field may be turbulent. Perlklnetlc flocculatlon Is only significant 

for particles less than 1 pm In size (S.G.-2.5) in a shear field with 

a G of less than 10 sec"^. The effective mean shear rate for 

flocculatlon is not the same as the mean value obtained from power 

dissipation per unit mass («), but is equal to the volume average 

value obtained from the first moment of the shear rate distribution. 

This quantity is highly dependent on the system geometry. 

Experimental results indicate flocculatlon efficiency in a couette 

flow reactor and in a stirred tank reactor are comparable if the 

effective mean shear rates are used. 

Koh (1984) took the compartmentalization concept a step further by 

considering partially destabilized suspensions. These partially 

destabilized suspensions require some minimum shear rate (Ggric) 

before flocculatlon can occur. In a compartmentalized stirred tank, 

there will be areas where the shear rate is high enough to cause 

flocculatlon even though is less than Ggrif Flocculatlon rate 

data for the couette flow and stirred tank reactors deviate at low G 

values. The deviation is the result of high shear rate regions, near 

the Impeller of the stirred tank, which exceed Ggpi^" These regions 

are absent in the couette flow reactor. 
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Kim and Glasgow (1986) also used a two compartment model. They 

assumed that flocculatlon occurred in the total tank volume, but 

breakup only occurred In the impeller region. 

Structural Modela 

All of the models previously discussed have been modifications of the 

kinetic model proposed by Smoluchowski. Each of the researchers has 

fine tuned the coagulation kernel to account for some aspect of 

physical reality. The fact that the kernel in this model contains 

all of the physics leads to some problems. Julllen and Botet (1987) 

state: 

" The main problem with Smoluchowski's formalism is that all 
of the physics is entirely contained within the , and 
thus, as long as we do not get any precise idea on their i-
and J - dependence, we will certainly play with very 
interesting mathematical games, but without any obvious link 
to reality." 

By 'their i- and J- dependence' the author is referring to the 

transport and structural interaction relationships between the 1 and 

J size entities. Thus, it is necessary to go beyond simple kinetic 

relationships based on conservation of volume and the mean field 

theory approximation. It is necessary to incorporate transport 

mechanisms and floe structure into our thinking. 

It is noted that in all of the attempts to fine tune the population 

balance model for turbulent flocculatlon, mentioned above, it was 
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necessary to make simplifying assumptions, or somehow compromise the 

equations to achieve a solution. These compromises and 

simplifications are probably inevitable as long as the problem is 

being attacked using the population balance approach. 

I believe that the analytical approach to population balance modeling 

will continue to yield valuable Information, but it needs to be 

supplemented by additional research tools. The kinetic models assume 

that the flocculating particles are spheres which, upon sticking, 

coalesce to form a larger sphere. This denies the importance of the 

floe structure, and yet we know that the structure is important. If 

the density of the floe changes with size, or the ability qf the 

particles to penetrate the floe changes with size, the process 

kinetics can be greatly effected. Gregory (1986) noted that these 

structural considerations can have a large influence on the proces

ses which follow flocculation, i.e., sedimentation and filtration. A 

number of researchers (Koh, Andrews, and Uhlherr, 1987; Tambo and 

Watanabe, 1979a, and 1979b; Lagvankar and Gemmell, 1968; Boadway, 

1978) have recognized that floe structure needs to be considered. 

These authors attempted to Incorporate floe structure into their 

models by identifying a mathematical relationship which would relate 

floe density and floe radius. 

Earlv attempts Lagvankar and Gemmell (1968), early pioneers 

in this attempt to incorporate structural information into the 
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Smoluchowskl model, used the Void model. This model gave 

qualitatively reasonable results, but wasn't ideal. A three level 

floe structure was observed in the laboratory, and the Void model 

wasn't capable of accounting for more than a single level structure. 

The authors recognized that the Sutherland model, which could 

accommodate the multi-level structure, was probably superior to the 

Void model, but at that time it did not have a functional form which 

allowed easy inclusion into the kinetic model, fioadway (1978) 

followed Lagvankar and Gemmell's lead and incorporated the Void model 

into the kinetic equations. 

Tambo and Watanabe (1979a, and 1979b) also recognized the super

iority of the Sutherland model, but had difficulty in formulating a 

convenient mathematical expression. They responded to this by 

formulating a primitive cluster-cluster aggregation model, which is 

conceptually similar to the more sophisticated models of Meakln 

(1986a, 1986b, 1985, 1984, 1983a, and 1983b), Kolb (1986), Kolb et 

al. (1986, and 1983). In verifying their diameter density 

relationship they concluded that floe density (alum/kaollnite system) 

was Independent of the following factors: 

o type of aluminum coagulant used; alum vs polyaluminum 
chloride @ 20 *C 

o agitation intensity (40 to 80 rpm in a non-standard 
reactor; breakup was not dominant) 

o alkalinity 
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o flocculant aids 

From this one must conclude that the floe structure is dominated by 

the particle transport mechanism. The alum dose did have a 

significant Impact on the floe strength. 

Present Modeling Efforts These attempts at including 

aggregate structure were performed without knowledge of the veritable 

explosion of structure information being generated by the theoretical 

physics community. Mandelbrot (1983) really kicked the whole thing 

off by making the world aware of fractals, or perhaps more specifi

cally, fractal geometry. This is really what Lagvankar, Gemmell, and 

the others were looking for. They were equipped with all of the 

tools needed to deal with Euclidian concepts, but floe are by their 

very nature non-Euclidian. They are instead random fractals. 

Let's step back a moment and define some terms. The Smoluchowskl 

model assumes that when two spheres of sizes 1 and j contact, they 

form a single sphere of size k, and volume is conserved. This is 

what the theoretical physicists call a compact or non-fractal 

structure. The density of the object is constant at all scales. 

What exactly is a fractal? Mandelbrot (1983) defines a fractal as a 

set "whose Hausdorff dimension is a fraction or otherwise exceeds 

their topological dimension". This exact definition is of little 

practical use to an engineer. La Brecque (1987) states "the fractal 
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dimension of an object, usually a non-Integer or fractional value, Is 

a measure of the extent to which it (the object) fills the space In 

which It Is embedded." This Is a friendlier definition, but it still 

makes it difficult to see the power of the concept. 

Let's look at a more intuitive definition. Consider (Gregory, 1986) 

a plot on a log-log scale of a characteristic length (diameter; x-

axis) of an aggregate versus the number of particles in the aggregate 

(floe mass; y-axls). The slope of this log-log plot represents the 

fractal dimension of the aggregates. If the floe is a perfect 

sphere, the fractal dimension and the Euclidian dimension will be 

equal, and both dimensions are 3. However, for an aggregate, a plot 

of this type typically yields a slope substantially less than 3, 

which indicates that the objects density decreases as the diameter 

increases. Thus the fractal dimension will be less than the 

Euclidian dimension. 

Gregory calculated the fractal dimension for some of the alum floe 

data of Tambo and Watanabe (1979a). The fractal dimension (d) of 

these floe was 1.7 in 3 dimensional space. Feder (1988) reports the 

fractal dimensions of a number of real life aggregate systems 

including; gold colloids with d-1.71 in 3 dimensions; silica clusters 

with d-2.12 in 3 dimensions. We can tell a little something about 

the geometry of the floe by simply looking at their fractal 

dimension. Two of the natural systems mentioned have a fractal 
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dimension of less than 2 in a 3 dimensional space. Feder (1988) 

states that, if a fractal object has a 3 dimensional fractal 

dimension >2 and it is projected in 2 dimensions, it will appear 

compact. If an object has a three dimensional fractal dimension <2 

and it is projected in 2 dimensions, its projected image will have an 

open or non-compact structure. Thus, if the floe have a fractal 

structure, we should be able to inspect the floe, and look at the 

simulated floe produced by the various models and determine which of 

the simulation models appears most appropriate. Gregory (1986) has 

suggested that applying these concepts to modify the Smoluchowski 

theory would be worthwhile. 

Let's review some of the simulation models and see how they compare 

to what we know about orthokinetic flocculation. 

There is a great deal of work on this topic from the area of 

theoretical physics. The interested reader is referred to: Heakin 

(1985); Kolb, Botet, and Jullien (1983); Heakin (1983a and b); Heakin 

(1984); Heakin (1986a and b); Kolb et al. (1986). The information 

presented here reflects material presented in the above references, 

but follows most closely the presentation by Jullien and Botet 

(1987). 

All of the structural models are based on computer simulation 

techniques. These computer simulations can be broken down into two 
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main classes; particle-cluster aggregation (PGA) and cluster-cluster 

aggregation (CCA). 

The FCA models are conceptually similar to the Smoluchowski model in 

that they have a fixed collector and stick irreversibly. The 

mechanism involved in the particle approaching the collector dictates 

the structure of the aggregate. 

The FCA models most frequently used are given in Table 19 along with 

their aliases and the type of particle trajectory used in the model. 

Table 19. Common particle-cluster aggregation models 

Model Name Alias Trajectory 

Witten-Sanders Diffusion limited Brownian 
aggregation (DLA) 

Eden Chemical Brownian W/ 
limited prob
ability of 
sticking 

Void Ballistic Linear W/ random 
impact parameter 
Linear W/0 random 
impact parameter 

Because each of the FCA models currently in use can be viewed as a 

variant of the DLA model, the DLA model will be discussed first. The 

DLA model assumes a fixed collector particle which is approached by 

other particles driven by Brownian motion. If the particles come in 
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contact with the collector particle, the probability of sticking 

Irreversibly Is 1. The Brownlan motion Is simulated using a random 

walk. Figure 58 illustrates the mechanics of a typical random walk 

simulation (Meakin, 1986a). À particle is released from a randomly 

selected point on the middle ring of the three rings in the figure, 

this is sometimes referred to as the launch ring. The particle is 

then moved in randomly selected directions until one of two things 

happens. The particle may move outside of the outer ring. If it 

does this, it is considered Infinitely far away with a zero 

probability of coming in contact with the collector, and is "killed". 

This other ring is sometimes called the kill ring. The other 

alternative is for the particle to land on or occupy a site adjacent 

to the collector particle. If this happens, the two are irreversibly 

bonded, and the collector particle becomes a collector cluster. This 

process simulates the Brownlan diffusion of a particle in water. 

Many of these particles are released during the course of a simul

ation. 

If the random walk trajectory is kept, and we change the probability 

of sticking from 1 to something approaching 0, we get the Eden model. 

This model is also called the chemical model because it acts as if 

there is a barrier to sticking. This barrier to sticking can be 

thought of as a partial screening, similar to an activation energy in 

some chemical reactions. Physically, in terms of flocculation, one 

can think of the DIA model as representing perikinetic 
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Figure 58. Simulation of a two-dimensional Vltten-Sander aggregate 
using a square lattice. The two particle trajectories (tj^ 
and t2) start at random points on the "launching circle" 
which has a radius of lattice units where r^^j^ Is the 
maximum radius for the cluster. Trajectory t^ reaches an 
unoccupied Interface site and growth occurs into this site. 
Trajectory t2 reaches the Sr^^^ "kill ring" and Is retired 
from the simulation 
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flocculatlon with little or no repulsive barrier, and the Eden model 

as representing a large repulsive barrier. 

In the Void model (Ballistic) the probability of sticking is again 

set at 1, but the trajectory is now linear. A particle is launched 

from a randomly selected point on the launch ring and follows a 

randomly oriented linear path. If the particle comes in contact with 

the collector, it sticks irreversibly. The randomly selected angle 

of launch is called the impact parameter. In a linear trajectory 

without impact parameter, all trajectories must pass through the 

origin. It is noted that the collector particle is located at the 

origin. 

The 2 and 3 dimensional structures which result from these PGA models 

are shown in Figures 59 and 60. It is noted that, if the simulation 

is carried out long enou^, all of the models presented here except 

the DLA will produce a compact structure, i.e., non-fractal. The 

Void model, due to small scale simulations, was originally thought to 

have a 3 dimensional fractal dimension of 2.3. It is now known to 

have a fractal dimension greater than 2.8, and it is probably equal 

to 3 (Meakin, 1986b; Jullien and Botet, 1987). 

La Brecque (1987) Quotes Paul Meakin: 

"It is clear that the Witten-Sanders model is Just not the 
way real colloids aggregate. Rather than occurring at a 
single growth site to which particles are added one at a 
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Figure 59. This Is an Illustration of the Influence the particle 
trajectory has on the resulting shapes of the clusters 
obtained by particle-cluster aggregation processes in two 
dimensions. To give an idea of their relative size, all of 
the aggregates have the same number of equal sized particles 
(4,096). Only the Witten-Sanders (Brownian) aggregate is 
fractal 
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Figure 60. This Is an Illustration of the Influence the particle 
trajectory has on the resulting shapes of the clusters 
obtained by particle-cluster aggregation processes in three 
dimensions. To give an Idea of their relative size, all of 
the aggregates have the same number of equal sized particles 
(4,096). As In two-dimensions, only the Wltten-Sanders 
(Brownlan) aggregate Is fractal. However, since Its fractal 
dimension Is larger than two (D»2.5), It looks compact in 
projection 
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time, the aggregation process Is going on all over the place. 
You start to form small clusters, and the small clusters combine 
to form larger clusters and they combine to form still larger 
ones." 

This is the essence of simulating cluster-cluster aggregation (CCA). 

The first CCA model was developed in 1957 by Sutherland (Meakln, 

1986a), but without the unifying concept of fractal geometry it lay 

virtually unused until 1983. In 1983 two research groups, Meakln 

(1983a) and Kolb, Botet, and Julllen (1983), rediscovered the model 

Independently of each other and of Sutherland. The model starts with 

an ensemble of single particles. Fairs of the particles are launched 

from the launching ring. If they aggregate before one of them passes 

the kill ring, the aggregate is placed into the ensemble as an entity 

to be launched. If the particles do not aggregate, they are placed 

back into the ensemble to be selected again as primary particles. 

Eventually one ends up aggregating aggregates. This is the original 

CCA model, and is referred to as a hlerarchlal aggregation model. 

All of the trajectories and sticking probability combinations 

discussed under the FCA models also apply here, 

A CCA box model was also developed (Meakln, 1986), in which all of 

the particles are placed randomly on a lattice. The particles are 

then selected at random and moved. The aggregation process is 

carried out as long as desired, or until all of the particles are 

contained In a single aggregate. The two CCA techniques produce the 

same aggregate characteristics. 
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Figures 61 and 62 show the structures formed by the different CCA 

models. Their fractal dimensions are shown in Table 20. 

Allowing clusters to rotate as well as translate has no measurable 

impact on the fractal dimension, as long as the rate of rotation is 

within realistic bounds. 

The simulation models discussed above are comparable to the 

Smoluchowski type models for Brownian motion and shear flocculation 

Table 20. Common cluster-cluster aggregation models and 
their fractal dimensions 

Model Name 2-Dlmensional 3-Dimenslonal 

Brownian 1.44 1.78 
Chemical 1.55 2.04 
Ballistic 1.51 1.91 
Ballistic W/0 
Impact Parameter 1.56 2.06 

without a breakup term. All of these simulation models have assumed 

that the aggregation is irreversible. As previously mentioned this 

is not a valid assumption for flocculation in a turbulent flow field. 

Meakin (1985, 1986b) and Kolb (1986) have both carried out simulation 

studies dealing with the effect of reversibility on the nature of the 
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Figure 61. This is an illustration of the influence the cluster 
trajectories on the resulting shapes of the clusters 
obtained by cluster-cluster aggregation processes in two 
dimensions. To give an idea of their relative size, all of 
the aggregates have the same number of equal sized particles 
(4,096) 
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Figure 62. This Is an Illustration of the Influence the cluster 
trajectories on the resulting shapes of the clusters 
obtained by cluster-cluster aggregation processes in three " 
dimensions. To give an Idea of their relative size, all of 
the aggregates have the same number of equal sized particles 
(4,096) 
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structures formed during CCA. They both incorporated reversibility 

by allowing bonds to break after a set time with some probability. 

Allowing reversibility of this type produces a 3 dimensional fractal 

dimension of 1.56. The only way that this type of reversibility is 

pertinent to flocculation, is if the time scale for breakage were 

related to the time scale for floe exposure to the impeller region. 

It is suggested that it would be more meaningful to fracture the 

aggregate at it's weak point, i.e., point of fewest bonds, when a 

certain shear stress is exceeded. This is an area where there is 

currently a large amount of work going on (Jullien and Botet, 1987). 

It is interesting that the FCA, DLA aggregate is symmetrical around 

its center, and all of the PCA models produce a structure which is 

spherical in their overall shape. The CCA models on the other hand 

produce a structure which is distinctly anisotropic. Intuitively 

this is expected. Since the CCA floe are formed by two clusters of 

roughly the same size, one would expect a shape which is on the 

average oblong or ellipsoidal (Jullien and Botet, 1987). 

Boadway (1978), working with an alum floe, reported that small floe 

appeared as dense spheroids, and the large floe were loose aggregates 

of the small dense particles. The large floe were irregular in 

shape, but on the average were a prolate spheroid with the length 

twice the width. 
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Reed and Hexry (1986), working with alum floe, found that the 

particles at optimum alum dose were generally Irregular in shape and 

tended to have discontinuities. The floe at non-optimum dosages of 

alum where smaller and tended to be spheroids. 

The descriptions given in these two references sound a lot like the 

structure of a CCA aggregate. It is proposed that if one observes 

the floe produced in the laboratory, and selects a CCA model which 

produces a similar structure, it would be possible to incorporate 

this information into a kinetic model. There are currently a number 

of groups in the theoretical physics area who are working on this 

very problem (Leyvraz, 1986; Kolb, Botet, Jullien, and Herrmann, 

1986; Family, 1986; Feder and Jossang, 1986; Ernst, 1986; Racz, 

1986). However, these researchers have yet to produce anything the 

average engineer can apply to the orthoklnetlc flocculatlon problem. 

All of the orthoklnetlc flocculatlon modeling studies discussed above 

have relied on the viscosity term in G to correct for the temperature 

at which the flocculatlon is carried out. There are two places where 

G has frequently been found in the models used in the previously 

mentioned studies; the aggregation term, and the breakup term, if the 

model has one. All of the studies discussed, except 2, have simply 

used G in the aggregation term. Speilman (1978), and van den Ven and 

Mason (1977) both used G®*®^. Changes in G cause changes in the 

flocculatlon rate which are directly proportional to G and inversely 
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proportional to Thus changing the temperature from 20 "C to 5 

"G, one would expect a change In the rate of primary particle 

disappearance on the order of (^20/^5)^^^' « is kept constant, 

this would result in a 18 percent reduction in the rate. Assuming 

the relationship is a 16 percent decrease in rate would 

result. 

All of the studies which included a breakup term, except two, also 

assumed that the breakup term is directly proportional to G. The two 

exceptions are Hinze (1955) and Camp (1968). Assuming that breakup 

is proportional to 6 would indicate that as the viscosity went up 

(colder temperature), for the same e, the breakup would go down. 

Hinze (1955) assumed that breakup would be directly proportional to 

fi, this would yield a 1.5x increase in breakup in going from 20 to 5 

*G. Gamp said T-;**G, where T is surface stress. This yields or 

an increase in breakup of 1.22x for the same temperature change. If 

breakup is proportional to G, one would expect to see larger floe at 

5 degrees than at 20 degrees for constant e, given enough time, 

because although the kinetics are slower the breakup is less. 

However, if Hinze or Camp is correct, the colder temperature should 

produce a smaller floe. 
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METHODS SECTION 

Introduction 

The first portion of this methods section, I.e., the Introduction, Is 

an overview of the experimental portion of the work being reported 

herein. The second portion contains detailed Information regarding 

materials preparation and equipment. 

The work being reported here is an experimental study. The main 

objective Is to determine the effect of low temperature on 

flocculatlon In a turbulent flow field. Experiments were conducted 

at three temperatures, 20 ", 5 ', and one experiment at 2 "C. The 

effects of temperature were measured by changing the flow field 

characteristics and the system chemistry and measuring the Impact of 

these changes on the flocculatlon process. This required the 

performance and monitoring of flocculatlon experiments in a 

controlled temperature setting. The controlled temperature 

conditions were achieved using a walk-In constant temperature room. 

The temperature In the room was monitored and controlled using a 

personal computer (PC) based data acquisition and control system. 

Kaollnlte clay was used as the primary particle system. The 

suspension water was buffered Ames, 1Â tap water. Alum, ferric 

sulfate, and a hl^ molecular weight catlonlc polymer (MagnlFloc 

573C) were used as coagulants i.n this work. 
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The flocculatlon work was performed in a bench scale batch reactor 

similar to the reactor used by Argaman and Kaufman (1968). Both 

stake and stator and turbine Impellers, shown In Figure 27, were 

used. The physical and chemical conditions In the flocculatlon 

reactor were monitored using the forementloned data acquisition 

system. The following process control parameters were monitored: 

o reactor pH 

o reactor temperature 

o impeller rpm 

o energy input. 

The Impeller rpm was used as the operational control parameter. The 

G for the reactor was estimated from G versus rpm curves published by 

Argaman and Kaufman (1968). The other turbulent flow field 

parameters, i.e., e and t), were calculated based on the G value given 

in these calibration curves. 

Samples were collected during each flocculatlon experiment at the 

following times: 

o homogenized sample 

o Immediately following rapid mixing with the coagulant 

o 1, 3, 5, 10,..., 30 minutes after slow mixing began 

o 45 minutes after slow mixing began (discretionary) 
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After a settling period, each of these samples was analyzed. The 

particle size distributions were determined using automatic Image 

analysis (Lemont OASYS), coupled directly to a microscope. In 

addition, a permanent photographic record was made of each sample. 

Initial suspension turbidity. Initial suspension zeta potential, and 

zeta potential following rapid mixing, were used as quality control 

parameters. 

Materials Preparation 

Çl»y 

Kaollnlte clay was used as the primary particle system. The 

kaollnlte had a log mean diameter of 1.8 /m. Figure 63 contains the 

log mean diameter +/- 1 standard deviation for 28 of the homogenized 

samples. It Is clear from these data that the stock suspension was 

quite consistent. For evaluation purposes, a primary particle has 

been defined as a particle with an equivalent circular diameter 

smaller than 2.5 /im. Based on a 25 mg/L suspension, a 1.8 pm 

diameter, a specific gravity (S.G.) of 2.65, and an assumption of 

spherical geometry, one can calculate 3 million primary particles per 

mL. The particle counting technique used In this project 

consistently counted around 6 million primary particles per mL In the 

homogenized sample. In Figure 64, for example, the total particle 

count In the homogenized sample was approximately 7.1 million 

partlcles/mL, and the primary particle count is approximately 6.5 
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Figure 63. Primary particle size distribution stability; log-mean 
equivalent spherical diameter +/- one standard deviation for 
28 arbitrarily selected homogenized samples 
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Figure 64. Typical prima^ particle size distribution (PSD) 
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million partlcles/mL. This is good agreement when one considers that 

the particles are actually plate-like material rather than spheres. 

Â 12 channel HIAC FC-320, with a 1-60 sensor, was also used to count 

many of the samples, it consistently counted around 200 thousand 

particles/mL. 

The major problem encountered in using clay as the primary particle 

system was dispersion of the clay. Three methods of achieving 

uniform dispersion were tested. These were: 

o intense mixing of the dry powder into tap water for 5 
minutes using a homogenizer, 

o pre-wetting the clay by soaking it ovemi^t, followed by 
intense mixing for S minutes using a homogenizer, and 

o adding the clay to water circulating throu^ a centrifugal 
pump, circulation was continued for at least an hour, and 
then repeated periodically (total of 3-6 hours of 
recirculation) for a day prior to use. 

Neither of the first two techniques provided adequate dispersion of 

the clay. The third technique provided complete dispersion. Figure 

65, is a schematic representation of the clay dispersion and mixing 

system. This system has a number of advantages, including: 

o 45 liters of 800 mg/1 suspension can be prepared at a time. 
This minimizes suspension variability. Errors due to 
measuring the clay and clay loss in sample transfer were 
reduced in significance because a fairly large mass of 
solid material (36 grams) is added to a large volume (45 
liters) of Ames, Iowa tap water. 
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Figure 65. Schematic of the clay dispersion and mixing system 
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o the 45 liters of stock solution provided primary particles 
for a large number of experiments, providing continuity 
from one set of experimental conditions to another, and 

o the recirculation system made it easy to get a 
representative sample of the stock solution. 

The following method was used to add the primary particles to the 

reactor. Approximately 15-16 liters of water were placed in the 

reactor, and the impeller was turned on at a rate of 100 rpm (G—80 

sec'l). The clay recirculation system was turned on and run for 10+ 

minutes to Insure complete homogeneity in the clay tank. It is noted 

that the clay recirculation nozzle enters the tank parallel to the 

tank floor and about 3/4" above the floor. This jet scours the floor 

clean of settled material. The sample hose was also used to scour 

out the comers and insure that all of the settled clay was in 

suspension. Once the clay suspension was completely mixed, the 

sample hose was purged briefly to waste, and a 500 mL sample of the 

800 mg/1 stock clay suspension was measured into a 500 mL graduated 

cylinder. The recirculation was shut down immediately after the 

sample was drawn. The 500 mL of stock suspension was added to the 

reactor, and the mixing increased to 250 rpm (G-550 sec'^). The 

volume of liquid In the reactor was then brought up to 18 liters for 

all turbine runs and 17 liters for all stake and stator runs. 

The 45 liters of stock solution were never used completely. After a 

period of time, usually about 2 weeks, the suspension color would 

start to change from off-white to white with a tinge of orange or 
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brown. When this change was detectable with the eye the remaining 

clay was discarded. The initial turbidity and the zeta potential In 

the reactor where measured as quality control parameters, and neither 

of these e^diibited significant change during the course of the study. 

Based on this, it is believed that the change noticed in the clay 

color did not impact the character of the clay significantly. 

Bvffered dilution water 

The suspension dilution water was Ames, lA tap water buffered with 

100 mg/L NaHCOg. The buffer stock solution was 1 molar NaHCOg, that 

is 84.01 g/1 or 84 mg/mL NaHCOg. An analysis of the tap water used 

in this study, with the buffer added, is shown in Table 21. The 

dilution water was made up as follows: 

6 the large stainless steel tank was rinsed thoroughly, 

o about 150 liters of tap water were run into the tank, 

o the buffer was added; 357 mL of the buffer described 
above was added to the tap water, 

o the water level was brought up to the 300 liter mark, 

o the water was then mixed thorou^ly and let stand 
ovemigiht, 

o after standing overnight the water was placed in 
rinsed, 18 liter carboys, and the carboys are placed 
in constant temperature storage. 
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Table 21. Dilution water chemical analysis summary 

Parameter Units Dilution Water Batch 
1 2 3 4 5 6 

HC03- ng/L 114 114 116.6 119 114 139 
C03-- mg/L 3.5 7.4 6.3 11.8 16.4 - - -

PH -log[H+] 8.54 8.8 8.75 8.89 8.95 8.3 
N03+N02-N ng/L as N 0.61 0.45 0.78 0.63 0.33 0.2 
TOTAL-P mg/L as P04 0.097 0.32 0.1 0.075 0.15 0.14 
SULFATE mg/L as S04 129 121 119 121 114 111 
CHLORIDE mg/L 44.4 31 29.6 31.2 33.4 32 
Na mg/L 48.5 47 47.7 46.2 44.7 52.1 
K mg/L 2.43 2.65 2.73 2.56 2.48 2.56 
Ca mg/L 56.9 50.4 62.4 60.9 58.4 59.5 
Mg mg/L 10.5 11 6.11 7.94 9.88 4.56 
Hn mg/L 0.0018 0.004 0.012 0.004 0.004 0.001 
Fe mg/L 0.017 0.083 0.132 0.054 0.056 0.015 
A1 mg/L 0.03 0.06 0.03 0.038 0.02 
NPOC mg/L 1.54 0.6 1.5 1.88 

Batch 1 2 3 4 5 6 
Date 11/04/87; 12/02/87; 01/28/88; 02/26/88; 5/27/88; 8/18/88 
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Çgfltwlflnt 

Alum, ferric sulfate, and a high molecular weight catlonlc polymer 

(HagnlFloc 573G) were used as coagulants In this work. The metal 

salts were stored as 0.25 molar stock solutions. The pH of the stock 

solutions were checked periodically to Insure that the Integrity of 

the solution was maintained. The pH of the Iron stayed below 2.2, 

and the pH of the alum stayed below 3.2. The metal salt dosing 

solutions were prepared volumetrlcally from the stock solution the 

day before they were used. This was done to Insure consistent 

speclatlon In the coagulant. If there was an aging of the solution. 

It would have a few hours to take place before the solution was used. 

10 mg/mL dosing solutions were used for the metal coagulants. 

The polymer, which Is a polyquatemary amine (MW approx. 100,000 

grams/mole), was also made up the day before It was used. The 

polymer was prepared by weighing one gram of polymer Into a weighing 

boat, followed by dilution to 1 liter. The final working solution 

for the polymer was a 0.1 mg/mL solution. This final working 

solution was prepared approximately 1/2 hour prior to use by a 10:1 

volumetric dilution of the 1 gram/L solution. 

All of the coagulant solutions were stored at room temperature until 

they were to be used. The coagulant was loaded into a syringe and 
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taken into the constant temperature room Just prior to injection into 

the reactor. 

Acid 

All pH adjustments were made using reagent grade HCl diluted 

volumetrically to 0.1 N with distilled water. The acid used for pH 

adjustment was not standardized. 

Equipment and Methods 

PH adjustment and monitoring 

The acid was added to the reactor using a 60 mL syringe with a #13 

gauge needle. The acid was added through the sample port on the side 

of the reactor, and was discharged into the impeller stream. The pH 

of the system was continuously monitored using a 12 mm diameter pH 

probe (pHeonix Electrode Company of Houston, TX), and a Fisher 

Accumet #610 pH meter. The pH meter was standardized using first a 7 

buffer, and then a 4 buffer. It was then checked again with the 7 

buffer. The 4 buffer has a pH - 4.05 and the 7 buffer has a pH-7.11 

at 5 "C. The pH meter was checked at both the beginning and the end 

of each experiment. 

The pH adjustment for the first six experiments, carried out a 20 °C, 

were performed as follows. The pH was lowered to approximately 7.5 

to 7.2 prior to rapid mixing. The alum was injected at the beginning 
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of rapid mixing, and the pH was fine tuned to pH - 6.8 during rapid 

mixing. 

At 5 "C fine tuning the pH during the rapid mix was not possible. 

The addition of the alum suppressed the pH and It did not recover 

until the rapid mix was over. The difference in pH recovery at 20 

and 5 *C is shown in Figure 66. This phenomenon lead to a number of 

questions : 

o What caused the slow recovery? Slow pH probe? Poor mixing 
efficiency? Carbonate chemistry? 

o Why was the pH depression consistently larger in magnitude 
at a pH of 7.4 than at a pH of 6.8? 

o Did the slow recovery cause the reduction in flocculatlon 
efficiency noted at 5 "C? 

A pH probe with a fast response time was purchased. The pH probe 

response time was verified using various buffers at low temperature, 

and the probe was eliminated as a potential source of the problem. 

Figures 67 and 68 illustrate the Impact of mixing time and intensity 

on the pH recovery rate. The low energy condition represents a G of 

450 sec'l (250 rpm), and the high energy condition represents a G of 

1020 sec'l (500 rpm). It is apparent from these figures that neither 

duration nor Intensity have a large impact on the recovery rate. 

Having considered the probe and the mixing regime, the next obvious 

thing to consider was the buffer system. The carbonate system 
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Figure 66. The effect of temperature on the pH recovery time after alum 
addition; the carbonate buffer system is used 
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Figure 67. The effect of rapid mixing Intensity on the pH recovery time 
after alum addition at 5 *C; the carbonate buffer system Is 
used 
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Figure 68. The effect of rapid mixing time on the pH recovery time 
after alum addition at 5 *C; the carbonate buffer system Is 
used 
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consists of 4 major species; CO3", HCO3', CO2, and H2CO3. In the 

range of pH values of interest the CO3" is negligible, so we will 

only consider the partitioning of the others. When alum 

(Al2(S0^)3*18H20) is added to water the following overall reaction 

takes place. 

Al2<S04)3*18H20 + 3Ca(HC03)2 ---> 2Al(OH)3 + 3CaS0/^_+ I8H2O + 6CO2 

This is actually a composite reaction which gives a simple 

description of a more complex series of reactions. It is suggested 

that the actual sequence of events is more like this. The alum is 

added and quickly forms Al(0H)3 precipitate. This leaves an excess 

of ions in solution, because each of the aluminum has tied up 

three hydroxides. The carbonic acid-bicarbonate reaction: 

H2CO3 < > H+ + HC03" 

is quick, on the order of 0.05 to 0.10 seconds at 25 "C (Stumm and 

Morgan, 1981). However, the carbonic acid-carbon dioxide reaction; 

H2CO3 <---> CO2 + H2O 

is slow, on the order of 24 to 40 seconds at 25 *C (Stumm and Morgan, 

1981). 

If we assume a temperature correction of the form K -

then K2/K2 - 2.5 for a temperature change from 25 *C to 5 "C. The 

reaction times at the two temperatures are shown below. 
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Reaction Reaction Time (Seconds) 

25 'C 5 'G 

H2CO3/HCO3" 0.01-0.05 0.25-0.13 
H2CO3/CO2 25-40 62.5-100 

Looking at Figure 66 we see that at 20 *C, it took about IS seconds 

for the pH to recover about 1/2 way out of its depression. At that 

point acid was added to adjust the pH to 6.8. However, it appears 

that it would have achieved equilibrium in about 30-40 seconds. We 

also see that the recovery, at 5 "C, takes about 120 seconds at both 

pH values. It appears that the slow pH recovery agrees very well 

with what carbonate chemistry would lead us to expect, and the slow 

recovery may indeed be due to the slow equilibrium time of the 

H2CO3/CO2 reaction. 

It is interesting to note that the magnitude of the depression is 

about the same for both the 5 and 20 *C samples near a pH of 7, and 

is considerably larger for the test run at pH of 7.5. This 

demonstrates two things. First, the change in the magnitude of the 

depression with pH is a nice demonstration of the change in the 

carbonate system buffer capacity with pH. Figure 50 shows the buffer 

intensity decreasing rapidly between pH-6.2 and pH-8.0. Thus, one 

would anticipate that the magnitude of the depression would be larger 

at a pH of 7,4 than at a pH of 6.8. Second, the similarity in the 

magnitude of the depression between the 20 "C and the 5 "C 
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demonstrates that the carbonate chemistry in this pH range is 

insensitive to temperature changes of this magnitude. Theory would 

lead us to expect this, as is shown in the curves in Figure 49 and 50 

in the Literature Review. 

Comparing data for 20 and S "G at a pH of 6.8, one sees that the rate 

at which the pH drops and lowest pH reached is very similar. These 

two things give an indication of the rapidity and extent of the 

aluminum hydroxide reaction. Based on this it is suggested that the 

changes in the carbonate buffer system kinetics does not seem to 

inhibit the alum reaction measurably, and one must look else where to 

explain any measured effect of temperature on flocculation. 

A number of hardware comments are appropriate at this point. A 9 mm 

diameter combination pH electrode was used during the initial 20 "G 

work. However, at 5 *C the 9 mm electrode was erratic. Replacement 

of the 9 mm electrode with a 12 mm electrode solved the problem. It 

is noted that the 9 mm electrode continued to work well at 20 "C, and 

the slope of the electrode was well within specifications, thus the 

problems were apparently related to the temperature conditions. The 

pH meter, along with the other equipment, was originally housed in 

the constant temperature room. Because of the problems with the pH 

probe at 5 *G it was deemed best to move all of the electronics out 

of the constant temperature room. Only the sensors were left in the 



www.manaraa.com

264 

constant temperature room. The sensor cables were approximately 6 

feet In length. 

There were two other major Interferences with the pH monitoring 

system. The type "T" thermocouple used to measure the temperature in 

the reactor interfered with pH measurement because of the voltage 

produced at the Junction on the bi-metalllc thermocouple. This 

voltage, which is above the ground state, induces a voltage across 

the pH probe membrane which is unrelated to the hydrogen ion 

concentration in the solution. However, the pH meter could not tell 

the difference, and therefore, gave results which were incorrect. 

The problem was solved by sealing the end of a small diameter glass 

tube, and placing the thermocouple inside the glass tube. The top of 

the glass tube was sealed with shrink tape to minimize moisture 

accumulation Inside the protective sheath. As long as the inside of 

the tube remained dry, the thermocouple was isolated from the pH 

probe and there were no further problems. 

The second interference problem with the pH meter was caused by the 

mixing motor. It appears that the collapsing field around the 

windings on the AC motor induced a current, which needed to be 

isolated from the reactor solution. Once a non-metallic coupler 

(Lexan) was used to connect the motor to the impeller, the 

interference was removed. On very humid days there continued to be a 

minor problem, even with the non-metallic coupler. This may have 
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been due to moisture In the coupler. This interference was readily 

identifiable because as the motor rpm was increased or decreased, the 

pH meter reading also increased or decreased. It is also noted that 

this motor interference problem was experienced with the Fhipps and 

Bird jar test apparatus. Either plastic impellers and shafts or an 

isolation transformer placed between the building circuit and the 

mixer should be used if it is necessary to measure pH values while 

the jar tester is running. 

Sample collection 

During the flocculatlon work, samples were collected at the following 

times for analysis of the particle size distributions: 

o prior to coagulant addition, homogenized sample 

6 immediately following rapid mixing, time zero 

o 1, 3, 5, 10,..., 30 minutes after slow mixing began 

o 45 minutes after slow mixing began (this sample was 
not taken during the first 6 experiments). 

The samples were withdrawn from the reactor through a side port using 

a 1 mL disposable syringe with a #13 gauge Perfectum PS 13 Hospi-

Luer 4-1/2 stainless steel hypodermic needle. Popper & Sons, Inc. of 

New Hyde Park, New York manufactured the needles. The sampling port 

consisted of a 3/8" brass hose fitting threaded into the wall of the 

reactor at the centerline of the turbine impeller blade. The port 

was fitted with a septum. Sample collection was initiated 5 seconds 
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prior to the sampling time, and a total of 15 seconds was used to 

draw a 1 mL sample. The sample was immediately placed in a specially 

constructed counting cell, which is shown in Figure 69. The 0.65-

0.85 mm deep cells were used in these flocculation experiments. Each 

sample cell was covered with 45x50 mm Number 1-1/2 (0.16--0.19 mm 

thick) Fisher brand Microscope Cover Glass. The slip covers are 

manufactured by Allied Fisher Scientific, of Pittsburgh, 

Pennsylvania. 

The sample cell was filled as follows. The slip cover was placed at 

the far edge of the sample well. The tip of the needle was rested 

upon the edge of the slip cover, and the sample was slowly discharged 

from the syringe. As the sample was discharged it was slowly drawn 

under the slip cover and filled the sample well. The slip cover was 

drawn across the sample well at a rate which was Just fast enough to 

keep the sample from piling up in front of the slip cover. When this 

was done properly, the resulting sample was free from bubbles and 

could be stored intact for 24 hours or more. It is important that 

the slip covers not be stored sitting over the sample well. This 

deforms the glass slip cover and they do not seal properly. 

Once the sample cell was loaded it was allowed to sit for 2 hours or 

longer. This curing period was to allow the particles time to settle 

to the bottom of the cell which is also the focal plane of the 

microscope. At the beginning of this project a series of 
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Figure 69. Schematic of the sample counting cell used with the AIA 
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photographic studies were performed over time to establish an 

appropriate sample curing time. The purpose of the curing time was 

two fold; to Insure that the settling period was sufficiently long, 

and that no flocculatlon was taking place In the counting cells. 

From the photographic study the minimum acceptable curing time at 

20*C was 40-60 minutes. From this It was assumed that 2 hours would 

be more than adequate at 5*G. It should be noted that in the 24 hour 

period over which photographs were taken, no further flocculatlon was 

detected within the counting cell. Once a particle reached the 

bottom of the cell it ceased to move regardless of its size. Because 

of the large size of some of the floe present in the suspension, it 

was possible to have the floe in crisp focus, and have the primary 

particles out of focus to the point of being nearly invisible. It 

was very important to focus the microscope on the primary particles 

and not on the floe, because the flocculatlon progress was being 

based on the disappearance of the primary particles. 

Construction of the sample cells was a two step process. The sample 

well was first machined. In machining the plexiglass, it was 

necessary to use a new tool, and to turn the tool fast with a slow 

feed rate. These conditions were used to minimize tearing of the 

plexiglass material. Once the depression was formed it was necessary 

to buff it smooth. The buffing was performed using first a coarse 

grit to abrade away all tears and scratches. Then progressively 

finer abrasives were used until a smooth finish was produced. It is 
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noted that the plexiglass is very soft and the needles easily put 

deep scratches in the floor of the cell. 

Çgvmting cell cUantng 

Cleaning the counting cells and slip covers was a multiple step 

procedure. The loaded cell was first placed under a large volume low 

pressure stream of tap water at about a 45* angle with the slip cover 

side up. This lifted the slip cover off from the cell hydraulically, 

and the slip cover must be caught or it will shatter upon impact with 

the sink. Once the slip cover was lifted, it was placed in a soaking 

solution of distilled water and "Micro" laboratory cleaning solution. 

The cleaning solution "Micro" is manufactured by International 

Products Corp. of Trenton NJ. The counting cell was then rinsed; 

first with tap water, and then with hi^ pressure water from the 

distilled water tap. After rinsing the cells were placed on edge in 

the cell holder, which is shown in Figure 70. The cells, in the cell 

holder, were placed in an ultrasonic bath and vibrated for at least 

20 minutes. The ultrasonic bath used to clean the counting cells was 

a Bransonic Model 220 manufactured by Branson Utrasonic Corp. of 

Danbury, CT. The ultrasonic bath contained a mixture of distilled 

water and "Micro" laboratory cleaning solution. Every 5 minutes the 

ultrasonic bath was shutoff and the cells were lifted up and down to 

flush the face of the cells. If the cleaning period was shortened, 

the micro not used, or if the 5 minute rinses were not performed, the 

cell cleaning was inadequate. The dirt tended to pile up in windrows 
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of particles which caused severe problems when the next set of 

samples were being analyzed. 

Once the cells had been washed in the ultrasonic bath, they were 

again rinsed with a hl^ pressure Jet of distilled water. After 

rinsing, the cells are placed between lint free paper towels, and a 

wei^t was placed on top of them. This encouraged the wlcklng away 

of water droplets and prevented the formation of water spots. Upon 

drying the cells were ready for re-use. 

The slip covers were cleaned In much the same manner. There were, 

however, additional steps required with the slip covers. Despite the 

best efforts made, the slip covers inevitably had visible 

contamination, which would have Interfered with viewing of the 

samples if it were not removed. The final cleaning was accomplished 

by breathing on the slip cover and then buffing the slip cover with a 

cleaning tissue. This process was repeated until either the slip 

cover was clean or until it broke. 

Reactor cleaning 

The reactor was cleaned Immediately following each experiment. The 

suspension in the reactor was first subject to Intense mixing to re-

suspend any material which may have settled during the experiment. 

The mixing also caused the breakup of any large floe, which had 
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formed during flocculatlon, Into small slowly settling aggregates. 

After the mixing the reactor was: 

o completely drained, 

o rinsed with cold tap water and then drained completely 
(this was done twice), 

o scrubbed down with a clean sponge, 

o rinsed with cold tap water a final time and drained, and 

o dried completely with a clean towel. 

TwfrldltY msaGwrement 

The turbidity of the initial suspension was checked on a Hach Model 

18900 Ratio Turbidimeter before the experiment and recorded. 

Turbidity was used as a quick, surrogate check of the kaollnlte 

primary particle concentration, which is an indication of the primary 

particle concentration. Figure 71 is a calibration curve indicating 

the approximate relationship between kaollnlte concentration and the 

suspension turbidity. The turbidity test was Intended to detect 

gross variations in the character of the primary particle suspension. 

Since the test was not used as an absolute standard, a variation of ± 

2 NTU in the initial suspension turbidity was considered acceptable. 

Initial turbidities for all of the experiments are shown in Figure 

72. The run number shown is an arbitrary value, this figure is 

intended to demonstrate the range of values measured. 
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The turbidimeter was calibrated as per the manufacturers 

recommendations. The sample turbidity to be analyzed was drawn from 

the reactor sampling port and measured prior to coagulant addition. 

The sample was loaded directly into a sample cuvette, and was 

Inverted several times prior to measurement. The outside of the 

sample cuvette was wiped clean with a tissue Just as the sample was 

placed in the instrument. Water tended to condense on the cold 

samples, however, this did not appear to effect the measurements, 

which were in the 20 NTU range. It was noted that all samples needed 

0.5 to 1 minute to produce a stable reading. 

Zeta potential 

A Model 102 Lazer Zee Meter, manufactured by Pen-Kem, Inc. of Croton-

on-Hudson, NY, was used to measure zeta potential. The electronics 

in the zeta meter have been upgraded to Model 104 electronics, but 

the optics are still original. Zeta potential (ZP) was used as a 

quality control parameter. ZPs were measured on both the homogenized 

sample and on the coagulated sample immediately following rapid 

mixing. It was Intended that maintaining a constant ZP would Insure 

that the surface charge of the clay would be maintained constant. 

The measurement techniques detailed in the manufacturers literature 

were followed closely. 

The calibration of the Instrument was checked using a standard 

suspension provided by the Instrument manufacturer. The instrument 
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performed very well measuring the standard colloid. The location of 

the ZP cells stationary layer was checked daily. 

The sample to be measured was drawn from the reactor and allowed to 

come to room temperature. This was done because the cold temperature 

samples frequently formed gas bubbles during ZP measurement and these 

gas bubbles made the measurements unreliable. In retrospect, this 

practice probably made the cold temperature ZP measurements 

completely useless. It is very likely that the surface charge 

induced by the hydroxide precipitate is temperature sensitive. 

•Jflg t99bniqw9 

The standard jar test was used ta determine the optimal coagulant 

dose for the batch reactor experiments. The jar tests were conducted 

using a Model 7790-300 Phipps & Bird 6 Paddle Stirrer. Both 

coagulant dose and system pH were controlled variables during the jar 

test experiments. A titration technique was used to deduce the 

amount of this acid to be used to achieve a specific target pH. The 

actual pH was always verified at the end of the jar test. The 

dilution water and the primary particle system were identical to 

those used in the batch reactor. The pH adjustment was performed 

prior to the rapid mix process. It was verified that the pH 

correction could be performed up to 1/2 hour prior to rapid mixing, 

and the target pH was still consistently achieved. 
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The particle suspension was produced by adding the appropriate amount 

of buffered tap water to each Jar using a 2 liter graduated cylinder. 

The stock particle suspension was then measured Into a 60 mL syringe 

and Injected Into the 2 liter glass beakers. Round glass beakers 

with baffles were used (Hudson, 1981). The volume of the suspension 

was corrected for the volume of acid and coagulant to be added to the 

Jar. The final volume was 2 liters of fluid. Acid and coagulant 

additions were dosed with disposable plastic syringes with #13 gauge 

needles. 

The jar tests were run as follows. The coagulant syringes were 

filled and laid along-side the appropriate jars. The mixer was set 

at 300 rpm, which corresponds to a G value of -1000 sec"^. The 

coagulant syringes were injected into the Jars in rapid sequence. 

Typically this would take approximately 15-20 seconds for 6 syringes. 

The coagulant was Injected below the first baffle, above the 

impeller, and near the tip of the Impeller. As soon as the last 

syringe was emptied the stop watch was started, and rapid mixing 

continued for 1 minute. At the end of the rapid mixing time, the 

mixer was set at 50 rpm, which corresponds to a G of -50 sec'^, and 

flocculation continued for 30 minutes. ZP samples were collected 

immediately following rapid mixing, during the first minute of 

flocculation. After 30 minutes of flocculation, the suspension was 

allowed to settle for 30 minutes. Optimum coagulant dose was based 

on settled turbidities. The settled turbidity sample was taken 
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midway between the end of the upper baffle and the Impeller shaft. 

Figures 73, 74, and 75 are typical jar test results for alum, ferric 

sulfate, and HagnlFloc 573C respectively. In these Figures, alum 

dosage Is expressed as mg/L of Al2(S0^)34rl8H20, and ferric sulfate 

dosage Is expressed as mg/L of Fe2(S0/^)3*7H20. 

Temperature measurement 

Routine temperature measurements were all performed using a type "T" 

thermocouple. The thermocouple consists of a pair of wires 

(copper/constantlne), which form a bl-metalllc junction. The 

junction produces a voltage which varies directly as the temperature 

varies. The data acquisition card Is equipped with a cold block 

(junction), and Is Internally calibrated to convert the voltage 

produced by the thermocouple to a temperature reading. The Internal 

calibration of the card was checked using an Ice bath, and was found 

to be correct at the Ice point. The thermocouple was encased in a 

glass sheath to prevent Interference with the pH measurements. The 

glass sheath caused a minor lag in the response time of the probe, 

but it was not long enough to warrant concern, on the order of 

seconds. 

Tachometer 

The mixing speed was measured using an Ametek Model 1736 tachometer 

with an encoder type sensor. This instrument was obtained from Cole-

Parmer Instrument Company of Chicago, IL. 
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Figure 73. Typical alum jar test results and ZP measurements 
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Figure 74. Typical ferric sulfate Jar test results and ZP measurements 
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Polymer Jar Test [MagniFloc 573c! 
20 Deg. C, 6 = 60 1/sec., pH = 7.0 
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Figure 75. Typical catlonlc polymer (MagnlFloc 573c) jar test results 
and ZP measurements 
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Motor controller 

The Master Servodyne motor and motor controller, manufactured by 

Cole-Parmer Instrument Company of Chicago, IL., was used to mix the 

batch reactor and monitor the energy put into the reactor. This 

system was used to control the speed at which the motor was rotating 

as well as hold the rotational speed constant. The Servodyne also 

measured (in DC millivolts) the torque being exerted on the motor. 

This measurement was used to monitor the relative rate at which 

energy was being applied to the contents of the reactor, and insure 

that it remained constant during each experiment and was reproducible 

from one experiment to another. 

Data acquisition and control 

The data acquisition system was used to monitor the flocculation 

reactor. The following process control parameters were monitored: 

o reactor pH 

o reactor temperature 

o impeller rpm 

o energy input 

llie tachometer, servodyne, pH meter and thermocouple were attached to 

a terminal panel which was connected to the analog card of the 

ACPC-16 Analog Connection PC personal computer based data 

acquisition/control system (Strawberry Tree Computers; Sunnyvale, Ca) 



www.manaraa.com

283 

(STC). The data acquisition and control card was housed in a Z-159 

Zenith Desktop Personal Computer System, which is an XT clone. 

During each experiment the STC collected the data and read it to a 

file on a 5 1/4 inch floppy disk. Graphs produced from this file 

were later plotted to provide a permanent record of the flocculation 

conditions. Figure 76 is an example of the data plots produced. 

The constant temperature conditions were achieved using a walk-in 

constant temperature room. The temperature in the room was also 

monitored and controlled using the STC PC based data acquisition and 

control system. 

Control of mixing Intensity 

The impeller rpm was used as the operational control parameter. The 

G for the reactor was estimated from G versus rpm curves published by 

Argaman and Kaufman (1968); see Figures 77 and 78. The other 

turbulent flow field parameters, i.e., e and tj, were calculated based 

on the G value given in these calibration curves; see Figures 79 and 

80. The formulas used to calculate these values are given in the 

turbulence section of the Literature Review. 

The energy put into the reactor was monitored for quality control 

purposes, but not for process control purposes. The ideal situation 

would have been to measure this energy directly, and to use this as 
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Figure 77. Variation In G produced by the turbine Impeller with 
temperature and rpm; 20 'C values based on Argaman and 
Kaufman's data (1968) 
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Kaufman's data (1968) 
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the basis for process control. However this was not possible for a 

number of reasons: 

o the linear factory calibration for the Master Servodyne was 
performed at 1500 rpm and the linearity assumption was not 
valid at the Impeller speeds used in this study, 

o the on-site calibration, performed using a home-made prony 
brake, proved woefully Inaccurate, 

o If either of the above mentioned calibration techniques had 
been successful the Master servodyne output signal would 
have proved inadequate. The output had a high noise/signal 
ratio, which made the energy input measurement unsuitable 
as a primary control parameter. 

The system rpm on the other hand can be monitored and controlled very 

precisely, therefore it was selected as the process control 

parameter. 

Using rpm as the control parameter raises the question, how does 

constant rpm relate to constant c, as temperature changes? The 

response is that maintaining a constant rpm as the temperature varies 

is equivalent to maintaining a constant e. This is because the 

system is inertlally dominated, and viscous forces can be neglected. 

This was verified experimentally, by measuring the energy output of 

the mixing system at various mixing speeds while operating at both 5 

and 20*C. A data point was collected every 15 seconds for 5 minutes 

at each rpm and temperature condition. The average of this data set 

was then used as the energy output under the specified conditions. 

The result of this is shown in Figure 81, and it can be seen that the 
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Figure 81, Experimental evidence that the e  versus rpm relationship Is 
Inertlally controlled 
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curves for 5 and 20'C are nearly Identical. There are three symbols 

plotted for each data point. The middle symbol with the line through 

it is the average value. The symbols above and below the average 

represent ± one standard deviation. Each of the final energy output 

curves is in reality a composite of 2 individual curves. Data were 

collected with the reactor full, and with the reactor empty. The 

reactor empty data were subtracted from the reactor full data to 

correct for any temperature induced changes not caused by the water. 

From Figure 81 it is obvious that the system is inertia controlled. 

This conclusion is also supported by the impeller Reynolds number, 

which is given for the turbine impeller in Table 22. The following 

formula was used to calculate the impeller Reynolds number. 

10.754 - dimensional constant to correct for mixed units 

Based on the Reynolds numbers presented in Table 22, it is not really 

surprising that the relationship between rpm and e is independent of 

viscosity. Re is the ratio of inertial forces to viscous forces, 

thus the Reynolds number tells us that the inertial forces are about 

Re - (10.754*N*D2*p)/p 

Where: 

Re 

N 

- impeller Reynolds number 

- impeller speed in irpm 

- impeller diameter in inches 

- fluid density, gm/cm^ 

- absolute viscosity in cp 

D 

P 
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10^ to 10^ times as important as the viscous forces, and we should 

expect an Inertlally dominated system. 

Table 22. Impeller Reynolds number for the turbine 
impeller 

Temperature *C 20 5 2 

RFH 30 Re 7982 5310 4818 
60 15964 10621 9636 
250 66515 44253 40150 

The impeller Reynolds number for the stake and stator impeller was 

not calculated, but it would obviously not be operating in the region 

were viscosity was dominant. 

Reactor 

The work presented in this paper was carried out in a bench scale 

batch reactor similar to the reactor used by Argaman and Kaufman. 

Both stake and stator and turbine impellers, shown in Figure 27 of 

the Literature Review, were used. Essential features of the 

plexiglass reactor used in the study are shown in Figure 82. The 

electric mixing motor was mounted on a wooden support which was 

rigidly attached to the top of the reactor. The tachometer encoder 

was attached to the shaft of the electric motor, and the encoder 

sensor was attached to the wooden support. The wooden support for 

the motor also held the pH probe and the thermocouple. 
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Lemont OASYS fully automatic Image analysis 

The particle size measurements ware performed using automatic Image 

analysis (Lemont OASYS), coupled directly to a microscope. This 

system Is shown schematically In Figure 55 of the Literature Review. 

The AIA was coupled directly to an Olympus BH-2S upright, transmitted 

light microscope with research quality optics (S Plan Achromat 

Objectives). Phase contrast, Nomarskl DIG, and dark-field optics 

were available for the microscope. 

In using this system, the operator selects a field to be counted, and 

adjusts the Image focus and contrast on the live Image. The Image 

analyzer takes the live Image from the microscope, and digitizes the 

Image. This digitized Image Is the basis for all of the analyses 

performed by the Image analyzer. Based on the Information from the 

digitized Image, the Image analysis software estimates such things as 

the particles projected area, equivalent circular diameter, 

perimeter, angle of repose, length to width ratio, etc., and then 

divides the particles Into classes based on this Information. 

There are two parts of the system which are potentially limiting. 

The first potential limitation Is the light microscope Itself. Table 

16 and Table 17 of the Literature Review list some pertinent 

Information on the optics of the light microscope. Remember, that 

the resolution of the system Is dependent on the magnification of the 
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objective used, and is not a function of the total magnification of 

the system. It is also noted that regardless of the objective lens 

in use, if a particle is smaller than 0.22 im, the particle is to 

small to be resolved by the system. This constraint is the result of 

the nature of light. The higjhest frequency components of visible 

light have a wavelength of approximately 0.44 /im. This wavelength 

sets the lower resolution limit for most light microscope systems. 

It is also held as a general guideline that, if the particle is >0.22 

fua but <0.5 /im, the system will resolve the particle but quantitative 

measurements of the particles will be difficult. 

It would be ideal to work at a magnification which would provide the 

max technical resolution of the microscope all of the time. Although 

this would be desirable it is also probably unreasonable to expect, 

because although it is technically possible to work at the systems 

maximum resolution all of the time, it would be cost prohibitive. At 

the magnifications necessary to achieve 0.22 pm resolution there are 

very few particles in each microscope field to be analyzed. This 

means many fields would need to be analyzed, and therefore extensive 

image analysis time and higher expense. Striving for this level of 

resolution is probably not warranted considering the other potential 

sources of variability involved in the flocculation process. Rather 

than striving for the highest resolution that can be achieved, the 

lowest resolution which gave, reasonable and reproducible data, was 

used in this research. 
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The following sequence of steps was used in selecting an acceptable 

combination of optics system and counting cell for use with the A1Â. 

The first step was selection of the optimal optics system. Phase 

contrast was rejected after a brief qualitative comparison with dark 

field and Nomarski. This rejection was based on the bright phase 

ring which appeared around objects. A series of counts was then 

performed to determine the appropriate optical system, sample cell 

depth, and objective lens magnification. This was done to minimize 

analysis costs and operator time, while still producing reliable 

results. Deepening the cell has two competing effects. A deeper 

cell means more particles to count per unit area after the particles 

have settled to the bottom (the focal plane). However, as the cell 

is deepened the water column is also deepened which degrades the 

image. A lower magnification means more area per field, and thus a 

higher number of particles counted per field. A lower magnification 

also means a reduction in optical resolution. If the cell used is 

too deep, or the magnification is too low the counts will be 

Inaccurate and erratic. The following options were considered: 

o optics: Nomarski and dark field, 

o system magnification: 238x (lOx obj.) and 474.6x (20x 
obj.), 

o cell depth: deep (-0.75 mm) and shallow (-0.27 mm). 
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From stage micrometer measurements and the AIA software, the area per 

field for the 238x and 474.6% was determined to be 1.19x10'^ cm^ and 

2.73x10"* cm^ respectively. The lower magnification field has 4.36x 

the area, and therefore, 4.36x the particle count of the higher 

magnification field. If the deep cell at low magnification is 

compared to the shallow cell at high magnification, there is 

approximately 9.45x more volume per field measured, and there should 

be 9.45x more particles. Using this line of reasoning, all of the 

field counts were adjusted to a common basis, and the optics systems 

were compared. The results of the comparison are shown in Table 23. 

Based on these data and the image quality perceived by the operator, 

it was decided that it was best to use dark field optics, a 

magnification of 474.6x, and the deep cells. 

The second potential limitation is the LEMONT itself. Ideally the 

LEMONT resolution limitations should be less restrictive than the 

light microscope limitations. Figure 54, from the Literature 

Review,and Figure 83, are distilled from information given in the 

LEMONT documentation (Lemont Scientific Inc., 1984). These figures 

show the digitized step size of the OASYS system as a function of 

magnification. The OASYS creates a 512 x 480 pixel digitized image. 

The resolution of this image is limited by the magnification of the 

object which was digitized. The graphs presented here show the 

dimensions of the individual pixels at the various magnifications. 

Figure 83 demonstrates nicely the fact that there is a diminishing 
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Table 23. Optics, magnification, and cell depth comparison 

Optics and Cell Combination 

Deep Cell Shallow Cell 

Sample Nomarskl Dark Field (DF) DF 
Name Name 

HI Lo HI Lo HI 

Counts per Field 

Homog. 359 216 550 500 569 
RM 597 491 485 
3 mln. 512 395 
10 mln. 324 129 343 239 
15 mln. 271 142 
20 mln. 155 115 
25 mln. 126 69 
30 mln. 115 61 
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return in increasing magnification after a certain point. Somewhere 

near 350x the increase in resolution for an increase in magnification 

becomes minimal. Figure 54 allows for rapid estimates the minimum 

step size. 

The Table 24 lists the magnifications available using the Olympus BH-

2S with Nomarski on the OASYS. The data for the dark field optics 

are identical to the data in this Table 24. This is because the 

portion of the Nomarski optics which affects system magnification was 

left in place during the use of the dark field. In the last column 

of the table is listed the smallest step the LEHONT OASYS is capable 

of taking at each magnification. The NFK lens shown in Table 24 is a 

lens between the microscope and the video camera, which the operator 

may change. 

The previous discussion dealt strictly with resolution in two 

dimensions (i.e., the x-y plan).. Since we are working In a three 

dimensional system, there is also another dimension which is of 

Interest, and we should really consider this dimension. It is 

desirable to have a clear crisp image, to perform quantitative image 

analysis. This requires that the depth of field available must be 

larger than the z dimension of the object to be measured. Table 17 

lists the depth of field for a number of objectives. It is obvious 

from this table that, if the floe are in excess of 50 pm it will not 

be possible to provide enough depth of field to provide, a crisp 
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Table 24. System magnification for the Olympus BH-2S microscope, 
with the Nomarskl in place, coupled with the OASYS AIA 

NFK Lens - 2.5% 
Objective Magnification Field of View Smallest 

Video Mônitor(/im) Step (pm) 
10 79.61% 1260.93 2.16 
20 159.53% 626.86 1.08 
40 317.71% 314.75 0.55 

NFK Lens - 5x 
Objective Magnification Field of View Smallest 

Video Monitor) (Aim) Step (pm) 
10 158.85% 629.51 1.09 
20 320.31% 312.20 0.54 
40 635.42% 157.38 0.28 

NFK Lens » 15z 
Objective Magnification Field of View Smallest 

Video Monitor)(pm) Step (pm) 
10 239.26% 417.96 0.72 
20 474.61% 210.70 0.37 
40 953.125 104.918 0.18 
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image. In fact, the maximum practical depth of field is actually 

closer to 10 fim than to 50 pm. This means that, with very large 

particles, it is necessary to work with an image which is always de-

focused to some degree. There is really no solution to this problem 

if we are to work with an optical microscope. 

Another concern is the number of features which must be counted on 

the AIA to give a statistically sound sample. During the first few 

experiments the counts were considered adequate when a total of 250 

features had been counted with 100 features in the mode and a minimum 

of 10 features in each class of importance. Figure 84(A) illustrates 

the degree of scatter that this set of guidelines yielded. It was 

believed that the quality of data could be greatly improved with 

little additional effort. Based on this belief, the following 

revised guide lines were adopted to determine when enough particles 

have been counted: 

o a goal of a minimum of 1000 features measured, if they can 
be measured in less than 20 frames, 

o a goal of a minimum of 500 features measured, if they can 
be measured in 30 frames, 

o an absolute minimum of 250 particles measured. 

o a minimum of 100 particles in the particle class which 
represents the mode of the distribution, 

o a minimum of 10 particles in any particle class important 
to the shape of the distribution curve. 
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Figure 84. The effect of total features counted on the reproducibility 
of the AIA analysis data 
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Figure 84(B) is an example of the reproducibility experienced with 

the new guidelines. 

When analyzing the samples it was Important to eliminate operator 

bias as much as possible. There Is a temptation for the operator to 

select sample fields which represent the operators view of "the way 

the sample should be". For example, In early samples there might be 

a temptation to select fields with large particle counts, in the 

later samples there might be a temptation to select fields with few 

primary particles and with a large floe in them. This problem was 

avoided by dividing the sample cell into randomized fields and 

analyzing the fields as they were selected. The random fields were 

selected based on the x-y coordinates provided by the verniers on the 

microscope stage. The range of x values and y values on the verniers 

corresponding to the sample well area on the sample cell were 

randomized, using a random number generator, and paired. The fields 

corresponding to these coordinate pairs were then analyzed until an 

acceptable number of features had been measured. 

The analysis of a typical field of particles would be as follows. 

The random field is selected. Once the field is selected the image 

is focused, the condenser is focused, the camera brightness and 

contrast are optimized, and the light intensity is optimized. It is 

very Important to optimize the image prior to digitization of the 

Image, since editing the image to enhance contrast always has the 
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potential of destroying Information. After the image is optimized it 

is collected, or digitized. In this step the computer scans the 

image and assigns a gray level to every pixel on the screen, the 

image analyzer software groups the screen pixels into a 256 x 256 

pixel matrix. Every pixel in this 256 x 256 matrix has an x and y 

location and a gray level varying from 0 (black) to 256 (white). It 

is possible, and usually necessary, to edit the digitized image to 

enhance the contrast. The purpose of the editing is to be sure that 

the computer actually sees what is really in the image. The image is 

edited by applying various digital filters, i.e., mathematical 

algorithms, to the digitized image. It is important that the 

operator maintain an original image to compare the edited image 

against. This is to guard against unwittingly corrupting the image. 

Intermediate Images are also maintained in case a specific filter 

happens to destroy the image, and all of the previous work is lost. 

This is a concern because an image which contains fairly complex floe 

structures may take and experienced operator in excess of 5 minutes 

to prepare for analysis. This is balanced on the other extreme by 

simple fields which can be prepared and analyzed in as little as 40 

seconds. The final image is analyzed by the image analyzer and the 

raw information is stored to disk. During the analysis of the Image 

the operator selects another random field, and the process begins 

again. This continues until an adequate total number of features 

have been analyzed. 
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Once all of the samples have been analyzed, the raw data are then 

processed, or played back. In this part of the analysis the operator 

sets up the analysis parameters and the size classes of Interest. 

The processed data are sent from the image analyzer to a 

microcomputer via the telephone lines, and the final data processing 

is all accomplished on a microcomputer. 
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EXPERIMENTAL DESIGN 

The experimental design section Is Intended to act as a road map for 

the Results and Discussion Section of the Dissertation. The first 

portion of the Results and Discussion Section deals with the 

selection of a particle sizing and counting system. The second part 

represents the main thrust of the research, the effect of temperature 

on flocculatlon. Both the particle counter evaluation and the 

flocculatlon studies were performed simultaneously. 

Particle Counter Evaluation 

The particle counter evaluation contains the results of a comparison 

of the HIAC PC-320 particle counter, equipped with a 1-60 fim sensor, 

and the Lemont OASYS fully automatic Image analysis system. This 

work was performed early In the research project In making a decision 

as to the optimal particle counting system for the flocculatlon work. 

Figure 85 summarizes the experiments which were performed In 

evaluating the two systems. 

Flocculatlon Experiments 

There are two areas In which we might expect the flocculatlon process 

to be effected by temperature. The characteristics of the turbulent 

flow field may change as the temperature changes, and the system 

chemistry may change with temperature. The tests performed to 

measure the relative Importance of these areas are described In the 
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Figure 85. Experimental plan for evaluation of particle measuring 
systems 
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next two sections. Table 25 Is a summary of the experimental 

conditions used during the testing. 

Changes In the flow field 

Figures 86-89 show the testing performed In studying the Impact of 

temperature induced changes in the turbulent flow field on the 

flocculation process. Two major parameters were changed in this 

testing, the Impeller geometry and the mixing energy being put into 

the reactor. 

The sensitivity of the system to changes in the structure of the 

small scale eddies was addressed by changing the energy input into 

the system. Two energy regimes were tested at 20 *C; G - 22 and 60 

sec'l. This established a base line for low temperature comparisons. 

Once a baseline was established, the suitability of various 

parameters for predicting the nature of the turbulent flow field at 

the lower temperature was tested. The assumption being that, if the 

character of the flow field was identical, then the flocculation 

performance should also be Identical. There are a number of 

parameters commonly used to characterize a turbulent flow field, 

including: 

o 

o 

o 

e, the energy/unit mass-time 

1), the Kolmogorov mlcroscale of turbulence 

6, the RMS velocity gradient. 
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Table 25. Summary of experimental conditions 

Primary Particles: Kaolin (Kentucky Ball Clay) 1.88 ^m dia. 
Particle Concentration: 25 mg/L, 24 NTU, 5.8 x 10° particles/mL 
Dilution Water: Ames, lA tap water buffered with 100 mg/L Na^HCOg) 

Coagulant: Alum as Al2(S0^)3*18 H2O; 10 mg/mL aged at room 
temperature overnight. 

Coagulant Dose: 5 mg/L as 412(804)3*18 H2O Base pH: 6.8 at 20 *C 

Coagulant: Ferric Sulfate as Fe2(80^)3*6 H2O; 10 mg/mL aged at room 
temperature ovemi^t. 

Coagulant Dose: 4 mg/L as 2^2(804)3*6 H2O Base pH: 5.5 at 20 "C 

Coagulant: HagnlFloc 573; 0.1 mg/mL aged at room 
temperature overnight. 

Coagulant Dose: 0.1 mg/L as HagnlFloc 573C Base pH: 7.0 

Rapid Mixing : 60 seconds 

TvTWqnt farometgre 

Temperature Turbine 
('C) RPM 

20 
5 

250 
250 

Energy Input 
per Unit Mass 
(cmv8®c ) 

3.03 X loj 
3.03 X 10^ 

RMS Velocity 
Gradient 
(sec'l) 

550 
448 

Kolmogorov 
Hlcroscale 

(lim) 

43 
58 

Flocculation: 30 minutes @ 20 "C; 45 minutes @ 5 *C 

Tyrbvlent Parameterg 

Temperature Turbine 
CC) RPM 

Energy / G-RMS Kolmog. Turbulent 
Unit Mass Vel. Hicro. Parameter 

Grad. Scale Held Const, 
(cmr/sec^) (sec'l) (pm) 

20 30 4.89 22 214 Baseline 
20 60 37.60 60 129 Baseline 
5 30 4.89 18 291 Const, e 
5 45 18.47 34 214 Const. 17 
5 34 7.86 22 266 Const. G 
5 60 37.6 50 175 Const, e 
5 86 129.6 92 129 Const, t} 
5 67 55.74 60 161 Const. G 
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In this research, the mixing energy put into the reactor was adjusted 

at low temperature so that each of these parameters was held constant 

one at a time. The full range of testing, shown in Figure 86, was 

done, in the A/D flocculation region using alum as the coagulant; the 

conditions were: 

o at 20 *C, alum dose - 5 mg/1 as alum*18H20, G - 22 and 60 
see'i, pH - 6.8, Turbine geometry. 

o at 5 "C, alum dose - 5 mg/1 as alum*18H20, pOH constant, e, 
tl, and G constant, Turbine geometry. 

Additional testing was done using ferric sulfate (Figure 87), and a 

cationic polymer (Figure 88) flocculated at constant c. The polymer 

testing was done under the presumption that the polymer should be 

insensitive to changes in system chemistiry. Thus, if the Initial 

mixing is adequate to disperse the polymer, any differences should be 

due to changes in the fluid dynamics of the system. The rapid mixing 

of the polymer was found to be very sensitive to temperature induced 

changes. The effect of temperature on rapid mixing is discussed in 

Srivastàva (1988). Only the results under optimal rapid mixing of 

cationic polymer are presented here. 

The sensitivity of the batch flocculation process to large scale 

turbulence, and to the locally variable nature of the flow field was 

tested by using two dissimilar impeller geometries (Figure 89). If 

the floe in the reactor are much smaller than the production scale 
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Const. Const. Const. Const. Const. Const. 

base 
line 
for 
G6% 

base 
line 
for 
GIV 

Low Energy Low Energy 
G = 22 1/sec High Energy High Energy 

G = 60 1/sec 

5 Celsius 20 Celsius 

EFFECT OF FLOW FIELD CHARACTERISTICS 

Figure 86. Experimental plan for evaluating the effect of turbulent 
flow field characteristics on flocculation efficiency with 
varying temperature 

Const. 

pOH 

base 
line 
for 
pHkpOH 

High Energy 
Const. E 

High Energy 
G = 60 1/sec 

5 Celsius 20 Celsius 

CONFIRMATION OF ALUM RESULTS WITH IRON 

Figure 87. Experimental plan for the confirmation of the turbulence 
results using iron as the primary coagulant 
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High Energy 
G = 60 1/sec 

5 Celsius 

Rapid Mix 
G=12S0 1/sec; 2.25 min. 

Rapid Mix 
G=12S0 1/seo; 2.25 min. 

20 Celsius 

Flocculation 
High Energy 
Const. 6 

CONFIRMATION OF ALUM RESULTS WITH POLYMER 

Figure 88. Experimental plan for the confirmation of the turbulence 
results using cationic polymer as the primary coagulant 

Low High High Low Low Low High High 

Stake &c 
Stator 

Stake & 
Stator Turbine Turbine 

5 Celsius 20 Celsius 

EFFECT OF IMPELLER GEOMETRY 

Figure 89, Experimental plan for evaluating the effect of impeller 
geometry on flocculation efficiency with varying temperature 



www.manaraa.com

312 

eddies, then any variability Introduced by the geometry change Is due 

to the non-homogeneous, anisotropic nature of the flow field. If the 

floe are similar in size to the production scale eddies, the 

variability may be due to either the change in the eddy distribution 

at the production scale, or it may be due to the non-homogeneous, 

anisotropic nature of the flow field. The testing was again done 

using alum, in A/D flocculation under the following conditions: 

o at 20 "C, alum dose - 5 mg/1 as alum*18H20, G - 22 and 60 
sec'l, pH - 6.8, Stake and Stator geometry, and the Turbine 
geometry. 

o at 5 *C, alum dose - 5 mg/1 as alum*18H20, pOH constant, e 
constant. Stake and Stator geometry and the Turbine 
geometry. 

Changes In system chemlatrv 

It is commonly assumed that the metal coagulants form various soluble 

hydroxyl species or a hydroxide precipitate. This would indicate 

that if one desires to keep flocculation conditions constant as the 

temperature drops, it will be necessary to maintain the pOH constant. 

However, it is the pH which is frequently cited as the variable of 

Importance. Figure 90 shows the tests which have been performed in 

establishing the effect of system chemistry on flocculation with 

respect to making temperature adjustments. A base line was 

established at 20 *C, and then experiments were performed at 5 *G 

maintaining constant pH and constant pOH. Host of the testing was 

performed using alum; then a number of tests were performed with 
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Const. 

pOH 

Const. 

pOH 

Const. Const. 

base 
line 
for 

pHkpOH 

base 
line 
for 

pBkpOH 

High Energy 
G = 60 l/sec 

Low Energy 
Const, c 

Low Energy 
G = 22 l/sec 

High Energy 
Const, f 

5 Celsius 20 Celsius 

EFFECT OF SYSTEM CHEMISTRY 

Figure 90. Experimental plan for evaluating the effect of system 
chemistry on flocculatlon efficiency with metal salts as 
coagulant and varying temperature 

Const. Const. 

pOH 

base 
line 
for 
pHkpOH 

High Energy' 
Const. C 

High Energy 
G = 60 l/sec 

5 Celsius 20 Celsius 

CONFIRMATION OF ALUM RESULTS WITH IRON 

Figure 91. Experimental plan for the confirmation of the system 
chemistry results using Iron as the primary coagulant 
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Iron to confirm the alum work. The iron tests are shown in Figure 

91. 

It is likely that the system chemistry not only affects the 

flocculation efficiency, but also the floe strength. This was tested 

with both the alum and the iron coagulants, by measuring the 

resistance of the floe to breakup (Figure 92). 
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TURBINE TURBINE TURBINE TURBINE 

IRON ALUM ALUM IRON 

5 Celsius 20 Celsius 

EFFECT OF SYSTEM CHEMISTRY 
AND IMPELLER GEOMETRY ON FLOC STRENGTH 

Figure 92. Experimental plan for evaluating the effect of 
geometry and system chemistry on floe break up 

Impeller 
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RESULTS AND DISCUSSION 

A summary of the experimental conditions was presented earlier In 

Table 25. The experimental results are presented In a graphical 

format, under two major groupings: data on particle counting and 

data on the effects of temperature on flocculatlon. The flocculatlon 

data will be divided Into 4 sections: turbulence effects, system 

chemistry effects, breakup, and miscellaneous data. 

Figure 93 is a typical example of the raw data collected during each 

experiment. Each particle size distribution (psd) in this figure 

represents a sample taken from the flocculatlon reactor at a 

different point in time. The y-axls Is number of particles per mL in 

each size class, and the x-axls is the equivalent circular diameter 

of each size class. Some of the samples have been omitted from this 

graph for the sake of clarity. Data of this type were then evaluated 

using a number of data presentation techniques. 

Host of the comparisons presented herein are based on a normalized 

rate of change of the primary particle number concentration. Primary 

particles have been defined as particles with an equivalent circular 

diameter less than 2.5 pm. Flocculatlon efficiency data will be 

presented as n^^/n^ versus diameter, where n^ is the primary particle 

number concentratlon/mL at time "t", n^ is the particle number 

concentratlon/mL at time zero, and diameter is the equivalent 
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Figure 93. Particle size distribution data as flocculatlon proceeds; 5 
mg/1 alum, pH-6.8, G-22 sec"^. Stake and Stator 
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circular diameter In /urn. The ratio n^/n^ Is the fraction of primary 

particles remaining in suspension at any time. Note that this ratio 

is always one for the homogenized sample. The zero coordinate on the 

time scale in this type of graph is defined as the end of rapid 

mixing. Because of this, the homogenized sample is always reported 

as negative time. 

The floe strength data will be presented as n^. versus diameter, where 

n^ is the particle number concentration/mL at time "t" in each size 

class, and diameter is the equivalent circular diameter in pm. 

In addition to these commonly used graphs the particle counter 

comparison data sets contain a graph showing the actual number 

concentration per mL of original sample at any given time. These 

graphs show both the total number of particles/mL in the suspension 

and the total number of primary particles/mL in suspension. 

Almost all of the experiments were performed in duplicate. The 

exceptions are as follows. The baseline conditions for alum at 20 "C 

with the turbine Impeller were performed in triplicate. Alum 

flocculated with the turbine impeller at high energy, constant pOH, 

constant e, at 5 *C was performed in triplicate. The 2 *C test with 

alum was performed once. All constant G experiments at 5 *C were 

performed once. The 5 *C, hi^ energy iron experiment was performed 

once. The polymer tests reported here were performed once. When 
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multiple experiments have been performed, the average value for the 

experiments has been presented In the graphical comparisons. 

Particle Counter Evaluation 

In performing this comparison It was assumed that the light 

mlcroscope/AIA system would provide the highest quality data. This 

comparison would actually be better termed an evaluation of the HIAC 

FC-320 12 channel particle counter equipped with a 60 /im sensor, 

using the AIA. Time was Invested In this comparison for two reasons. 

First, the water treatment Industry accepts and uses the HIAC 

particle counter in monitoring the flocculatlon process, and the 

reason for this acceptance is not obvious. There has never been a 

well thou^t out and controlled study reported in the literature 

which would demonstrate that the industries faith in this technology 

is warranted. The HIAC was designed for counting discrete particles, 

as opposed to flocculated material. It is possible, perhaps even 

likely, that breakup of floe In the counting cell is severe. It Is 

also possible that severe breakup of floe in the counting cell may 

not affect the usefulness of the Instrument In monitoring 

flocculatlon, if we define flocculatlon as the disappearance of 

primary particles. The impact of breakup on the instruments 

usefulness will depend upon the breakup mechanism. In other words, 

are the floe broken down to second level floe structures, or are the 

floe broken down to primary particles. 
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Second, if the HIAC Is a suitable Instrument for monitoring the 

flocculatlon process, it is much more convenient to use than the AIA. 

A problem inherent In the use of the AIA, and other microscopic 

techniques, Is the small sample size. The HIAC can easily count 

60,000 particles In the half the time It takes to count 1,000 

particles on the AIA. 

The following suspensions were used to evaluate the HIAC: 

o standard latex sphere suspension containing a 
combination of discrete sphere sizes (Figure 94), 

o well defined clay suspension (25 mg/1 Kentucky ball 
clay kaollnlte) (Homogenized sample for the 
flocculatlon tests), 

o a flocculated suspension containing strong floe 
(Figures 95 and 96), and 

o a flocculated suspension containing weak floe (Figure 
97). 

In Figure 94, the HIAC PC-320 was evaluated using a latex spheres In 

water suspension provided by the manufacturer. The sensor is rated 

by the manufacturer for 1 to 60 pm. The purpose of this experiment 

was to establish the low end sensitivity of the sensor. The primary 

particles used in the flocculatlon experiments were 1.8 /im in 

diameter. If the disappearance of primary particles was to be the 

measure of flocculatlon efficiency, then it was important that the 

Instrument be capable of reliable resolving and measuring particles 

smaller than the primary particles. Figure 94 shows that it would be 
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PARTICLE SIZE DISTRIBUTION COMPARISON 
HIAC vs. Lemont; Latex Standard 

14U 

--- HIAC 
— Lemont AIA 120 -

100 -

4 0 -

16 20 24 0 4 8 12 

Size (um) 

Figure 94. Comparison of the HIAC and the AIA using a standard latex 
sphere suspension 
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more accurate to consider the sensor completely reliable for the 

measurement of particles larger than 4 fjoa. The particle size class 

representing the sensors lower limit (1 fm), based on the 

manufacturers literature, exhibits a tremendous discrepancy. This Is 

a definite Indication that the HIÂC may have some shortcomings, but 

this Is not necessarily proof that the HIAC Is useless. The latex 

spheres are translucent and the HIAC works on a ll^t blockage 

principle, It Is possible that the HIAC may count natural material In 

the 1 pm range more effectively than It counts the latex spheres. 

Figure 95 Is a composite figure In which the HIAC and the AIA have 

both been used to evaluate the changes In particle numbers of 

different size categories at several times In the flocculatlon 

process. The kaollnlte clay being flocculated In these tests Is 

representative of many naturally occurring colloids. The homogenized 

sample Is dispersed clay, or. In other words, the primary particles 

used In all of the flocculatlon experiments. The flocculatlon 

conditions are given In the upper right hand comer of Figure 95B, 

and a strong floe was produced under these conditions. Note that 

this floe was formed In a low energy environment. 

Figure 95A and 95B show the actual particle size distributions 

measured. Note that the vertical axis on the HIAC graph Is In 

thousands and the vertical axis In the AIA graph Is In millions. 

Note also the total count/mL shown In 95C, and recall that, based on 
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Figure 95. Comparison of the HIAC and the AIA using a strong alum floe 
suspension aggregated at 20 "C and a G - 22 sec"* 
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a spherical geometry, a theoretical primary particle concentration of 

3 million particles/mL was calculated. This is another Indication of 

the HIAC's inability to reliably measure particles smaller than 4 /im, 

with a 60 /un sensor. 

It Is obvious from the preceding data that, althougpi the HIÀC does 

not measure all of the particles smaller than 4 fua, it does measure 

some of the particles smaller than 4 urn. Figure 9SC is the particle 

concentration/mL versus time during flocculation. There are two 

pairs of lines on this plot, the upper pair are the AIA numbers the 

lower pair are the HIAC numbers. The upper line of each pair 

represents the total number of particles/mL at the time specified. 

The bottom line of the two represents the total number of 

particles/mL smaller than 2.5 fm. From this graph one can see that, 

even thou^ the HIAC is not reliably counting all of the particles 

smaller than 4 /im, the small particles still account for the majority 

of the particles counted. Because this is the case, the HIAC data 

can be normalized and flocculation trends measured if the floe are a 

robust floe. Figure 95D demonstrates that even if the absolute 

numbers obtained by the HIAC are Incorrect, the flocculation trend 

established maybe useful. Figure 95D represents the HIAC and AIA 

data both normalized by dividing the particle count data by the 

particle count numbers in the homogenized sample. For this system 

with strong floe, the flocculation rate information is remarkably 
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good considering the poor quality of the absolute number count data 

for the HIAC Instrument. 

Figure 96 Is confirmation of the results shown In Figure 95. The 

floe grown In Figure 96 were grown under hl^ energy conditions. A 

total of six tests were performed with the strong floe, and all six 

revealed the same general trends shown In Figures 95 and 96. 

These HIAC data must be viewed cautiously, because even with the 

strong floe, there were occasional anomalies In the data. These 

anomalies were usually single data points which had extremely high 

counts when compared to the other HIAC data for the same experiment. 

None of the anomalies which occurred In the HIAC data occurred In the 

AIA data, the AIA data produced relatively smooth, well behaved, 

curves. Based on this, one must conclude that even In a system of 

strong floe. It would be necessary to continually check the HIAC 

results with a microscope. 

Figure 97 Is similar to Figures 95 and 96, but the data In Figure 97 

were collected from a weak floe system. The trends measured by the 

HIAC no longer mimic the trends measured by the AIA. The AIA shows a 

significant decrease In the number of particles over time, but the 

HIAC shows virtually no change In the particles less than 3 fim, and 

actually shows an Increase In the number of particles larger than 3 

urn. Figure 97D, the normalized counts make the source of the problem 
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obvious. The floe which have grown are not structurally strong 

enough to withstand the shear induced by transfer from the bulk 

liquid to the sensor and are being broken up in the sampling tube or 

in the sensor itself. As a result of the flocculation and then 

subsequent breakup, the number of particles being counted on the HIAC 

is not only not being reduced, but is actually being increased. 

Particles are growing into the 4+ im size and thus into the size 

range where the ability of the HIAC instrument to reliably count 

particles is good. Again, there were 6 tests performed with the weak 

floe, which showed the same general trends. Anomalies in the HIAC 

data were once again present. 

It appears that counting flocculated materials with the HIAC is 

perhaps possible with some floe systems, but the researcher must be 

extremely careful. Because it was necessary to use a weak floe 

system in some portions of this work, and because the HIAC did not 

reliable count the primary particles used in this work, the results 

produced by the HIAC were unacceptable for use in the work reported 

herein. 

Effect of Temperature on Flocculation 

Tw1?Mlgnç? reavlte 

Figures 98-101 contain the comparisons used to explore the effects of 

modifying the flow field characteristics, G, t), and e, as the 

temperature was changed. 
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Figures 98 and 99 represent flocculatlon of kaollnlte with alum under 

hlg^ and low energy conditions In the Â/D flocculatlon region, at 5 

"C and constant pOH, compared with 20 *C. The 5 'C experiments were 

conducted at constant G, r), and e, each of these parameters was held 

equal to the values at 20 *C. Constant G (root mean square velocity 

gradient) Is the traditional means used In sanitary engineering for 

correcting the turbulent mixing Intensity for temperature effects. 

Constant t; (Kolmogorov mlcroscale of turbulence) produces a flow 

field In which the size of the eddy with an eddy Reynolds number of 1 

Is the same. In practical terms, the lower bound of the turbulent 

flow field Is in the same place. Constant e Is equivalent to making 

no attempt to correct for temperature effects. The system Is 

Inertlally dominated, so keeping e constant means keeping Impeller 

rpm constant. The hope was that, by holding these various turbulent 

flow field parameters constant at the cold temperature, a parameter 

would be identified which did a superior Job of producing identical 

transport conditions in the flow field at the length scales equal to 

the primary particle size. In both the high and low energy 

environments, G, 17, and e all did a comparable job of correcting for 

the temperature Induced changes. None of the three energy parameters 

was able to eliminate the effect of temperature on alum flocculatlon. 

The constant e at 5 *C in the hl^ energy test is almost identical to 

the low energy results at 20 *C. One is tempted to rationalize this 
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by analyzing the various turbulent flow field parameters. However, 

further work, yet to be presented, using ferric sulfate, work with a 

catlonlc polymer, and breakup studies lead to the conclusion that 

much of the difference seen between the 20 'G and 5 *C alum floe Is 

related to floe strength, and not to turbulent flow field 

characteristics. The floe strength data will be discussed later, for 

now it is sufficient to say that the alum floe formed at low 

temperature is extremely weak. 

Figure 100 presents experiments performed with ferric sulfate to 

confirm the alum results. Figure 100 presents flocculatlon data with 

ferric sulfate at 20 and 5 "C, holding pOH and c constant. The 

experiments were conducted without correcting the mixing Intensity 

for temperature effects, that is, the energy input to the reactor was 

held constant as the temperature was varied. Under these conditions 

the results at 5 *C are very close to the results at 20 *C. There is 

a measurable difference between the 5 *C and the 20 "C data, but the 

difference is small especially when compared to the differences 

exhibited by the alum. 

Figure 101 presents a confirming experiment performed with catlonlc 

polymer (HagnlFloc 573C} to confirm the alum work. Figure 101 is for 

flocculatlon at 20 "C and 5 'C, holding pH and e constant. Again, 

one can see that although there is a measurable difference between 

the flocculatlon efficiencies at the two temperatures, the difference 
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Is small compared to the differences exhibited by the alum. It Is 

noted that the rapid mix conditions for the polymer were quite 

different than for the alum. A G of 1250 sec'^. for 2.25 minutes was 

used at 20 *C. At 5 "G, the rapid mix e was held constant, resulting 

In a G of approximately 1000 sec'^. The rapid mixing of the polymer 

was quite sensitive to temperature effects, however, there is not 

sufficient space here to discuss this phenomenon. Optimization of 

the rapid mixing step for the polymer is presented in Srlvastava 

(1988). 

Figures 102-107 present the comparisons between the turbine impeller 

and the stake and stator Impeller. The fundamental question of 

Interest in these experiments deals with the homogeneity of the 

turbulent flow field in the tank. How important is it to distribute 

e evenly over 80 % of the tank, as opposed to 5 % of the tank? All 

of the turbulent flow field parameters commonly used, i.e., G, ij, and 

e, assume a volume averaged e. This assumption implies that the 

energy input to the reactor is evenly distributed over 100 percent of 

the reactor volume. Figure 102 gives and indication of the non-

homogeneity of e in the reactor flow field. Figure 102 shows that 

the turbine impeller must turn quite rapidly to put the same energy 

Into the water as the S&S. 

Figure 103 and 104 are comparisons of the flocculatlon efficiency at 

a G - 22 sec'l and G - 60 sec'^, at 20 "C, using the turbine Impeller 
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and the stake and stator Impeller respectively. It Is Interesting to 

note that while there Is a measurable difference between the primary 

particle removals produced by the turbine Impeller, the difference In 

removal rate Is not as great as one would have expected If primary 

particle reduction is a linear function of 6. The results produced 

by the S&S impeller at the high and low energy conditions are nearly 

Identical. It is suspected that the reason there is so little 

difference between the high and low energy flocculatlon conditions is 

related to the wide separation in length scales between the primary 

particles and 7. 

The Impeller geometry comparisons may shed more light on this. Note 

that the volume averaged Kolmogorov mlcroscale is 214 and 129 /im at 

low and high G respectively (Table 25). Figure 105 is a comparison 

of alum flocculatlon at G - 60 sec"^ at 20 "G and 5 *C, with constant 

pOH and e, using both the turbine and the stake and stator (S&S). At 

5 *C, the S&S starts out at a lower rate of flocculatlon, and then it 

eventually overtakes the turbine and passes it. There is a lag of 

approximately 10 minutes before the S&S Impeller produces any 

noticeable change, but once it becomes effective, it performs very 

well. By 45 minutes, it has also done as well as the 20 "C S&S run. 

Keep this lag and subsequent catch-up in mind. 

Figure 106 Is similar to Figure 105 except it is the low energy 

conditions. Note that once again the 20 *C S&S data are very similar 
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to the 20 *C turbine data. Also, once again the lag is evident at 5 

"C, and this time the lag is evident for both the turbine and the 

S&S. For the first 10 minutes of the turbine data very little is 

happening, and then flocculatlon takes off. Looking back at Figure 

99 this lag is evident in all of the low energy low temperature 

turbine data. The first 20 minutes of the S&S data exhibit very 

little measurable flocculatlon taking place, and then once again it 

takes off and overtakes the turbine Impellers performance. It does 

not duplicate the performance at 20 *C even after 45 minutes, but 

there Is every indication that with a little more time it would have. 

It is suggested that the lag represents particles which were below 

the resolution limit of the particle counting system growing into the 

countable size range as rapidly as particles are leaving the primary 

particle range. Thus, no net change is observed. At 20 'C, with 

flocculatlon at a G of 60 sec'^, the primary particles leave the 

small sizes rapidly enough so that there is a net loss from the 

beginning, and the lag is not noticed. The cause of the slow growth 

is discussed further later. 

Figure 107 is a comparison of the S&S at two temperatures and at high 

and low energy conditions. The pOH and e were held constant as the 

temperature was changed. Note that at 20 *C, the performance is once 

again almost identical at G - 22 and 60 sec'^. Once again at 5 *C, 

the lag is evident at both low and high energy, and is almost 2x as 

long at the low energy. 
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As part of each experimental run, the floe size In the reactor was 

observed through a photographic quality glass window In the reactor. 

A general estimate of the maximum floe size was obtained using a 30x 

hand-held microscope with an optical micrometer. It was noted that, 

regardless of the Impeller geometry, the average floe size In the 

reactor was smaller at cold temperature than at warm temperature. 

For alum, the maximum floe sizes with the turbine Impeller at 20 "C, 

were approximately 100 and 200 /im for the G of 60 and 22 sec'^ 

respectively. For the 5 "C, constant pH, and high energy, the 

maximum floe size was <50 fm, and for constant pOH it was around 75 

(im. The maximum floe size for the 5 *C low energy experiments, was 

about 75 pm for both constant pH and constant pOH. The maximum floe 

size for the S&S impeller was a little larger at 20 *C, than the 

maximum floe size for the turbine Impeller. However, at 5 'C, 

regardless of conditions the max floe size produced by the S&S 

impeller also appeared to be the average floe size. The floe were 

extremely uniform, and were approximately 50 pm in size. This is in 

sharp contrast to the floe formed by the turbine, which appeared to 

cover a fairly large range of sizes. 

System chemistry results 

Figures 108-110 contain the comparisons used to explore the effects, 

on floeeulation efficiency, of altering the system chemistry with 

temperature. The system pH is the control parameter most frequently 
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used in flocculatlon. However, one must ask whether pH or pOH is the 

appropriate control parameter to use under varying temperature 

conditions. Table 26 is used to convert from a specified pH at 20 

*C, to the appropriate pK for a constant pOH at another temperature. 

Figure 108 shows high energy alum flocculation results at 20 'C and 5 

"C, holding e constant, and varying the system pH to produce either 

constant pH or pOH with changing temperature. Figure 109 is the same 

for the low energy flocculation conditions. In both cases constant 

pOH significantly out performed constant pH. It is noted that alum 

at 5 "G does not perform as well as alum at 20 "C, even with the pOH 

held constant. It is not obvious why this is the case. It may be 

because the half-time of water molecules in the water sheath 

associated with the aluminum ion is lengthened as the temperature is 

lowered. If the half-time were nsec, as it is with the iron ion, 

this might not be a concern. However, with aluminum the time scale 

is more on the order of seconds, and doubling the length of the 

association time may significantly change the reactions which 

dominate in the system. The first thought that came to mind, was 

that the reaction kinetics no longer favored surface adsorption of 

the positively charged species, and small hydroxide precipitates were 

forming in suspension. These hydroxide precipitates, if they exist, 

would form more primary particles and would be less effective at 

neutralizing the surface charges on the clay particles. The data, at 

first glance, seem to lend credence to this hypothesis. Host of the 

alum experiments and the iron experiments at 5 *C showed an increase 
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Table 26. Conversion from pH at a specified temperature to 
the appropriate pH for constant pOH at another 
temperature. The purpose of this table Is to allow 
the user to maintain a constant pOH as the 
temperature Is varied 

Temperature (»G) 
30 25 20 IS 10 

pOH pH 

8.67 5.17 5.33 5.5 5.68 5.87 6.07 6.21 6.28 
8.57 5.27 5.43 5.6 5.78 5.97 6.17 6.31 6.38 
8.47 5.37 5.53 5.7 5.88 6.07 6.27 6.41 6.48 
8.37 5.47 5.63 5.8 5.98 6.17 6.37 6.51 6.58 
8.27 5.57 5.73 5.9 6.08 6.27 6.47 6.61 6.68 
8.17 5.67 5.83 6.0 6.18 6.37 6.57 6.71 6.78 
8.07 5.77 5.93 6.1 6.28 6.47 6.67 6.81 6.88 
7.97 5.87 6.03 6.2 6.38 6.57 6.77 6.91 6.98 
7.87 5.97 6.13 6.3 6.48 6.67 6.87 7.01 7.08 
7.77 6.07 6.23 6.4 6.58 6.77 6.97 7.11 7.18 
7.67 6.17 6.33 6.5 6.68 6.87 7.07 7.21 7.28 
7.57 6.27 6.43 6.6 6.78 6.97 7.17 7.31 7.38 
7.47 6.37 6.53 6.7 6.88 7.07 7.27 7.41 7.48 
7.37 6.47 6.63 6.8 6.98 7.17 7.37 7.51 7.58 
7.27 6.57 6.73 6.9 7.08 7.27 7.47 7.61 7.68 
7.17 6.67 6.83 7.0 7.18 7.37 7.57 7.71 7.78 
7.07 6.77 6.93 7.1 7.28 7.47 7.67 7.81 7.88 
6.97 6.87 7.03 7.2 7.38 7.57 7.77 7.91 7.98 
6.87 6.97 7.13 7.3 7.48 7.67 7.87 8.01 8.08 
6.77 7.07 7.23 7.4 7.58 7.77 7.97 8.11 8.18 
6.67 7.17 7.33 7.5 7.68 7.87 8.07 8.21 8.28 
6.57 7.27 7.43 7.6 7.78 7.97 8.17 8.31 8.38 
6.47 7.37 7.53 7.7 7.88 8.07 8.27 8.41 8.48 
6.37 7.47 7.63 7.8 7.98 8.17 8.37 8.51 8.58 
6.27 7.57 7.73 7.9 8.08 8.27 8.47 8.61 8.68 
6.17 7.67 7.83 8.0 8.18 8.37 8.57 8.71 8.78 
6.07 7.77 7.93 8.1 8.28 8.47 8.67 8.81 8.88 
5.97 7.87 8.03 8.2 8.38 8.57 8.77 8.91 8.98 
5.87 7.97 8.13 8.3 8.48 8.67 8.87 9.01 9.08 
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in the number of primary particles at the end of rapid mixing. 

However, the hypothesis doesn't really fit the Iron system, since the 

half-time for water aesociating with the iron ions is in the nsec 

range, and the iron experiments exhibited an increase in particles at 

the end of the rapid mix. To explore this issue further the 

following set of experiments were performed to isolate the reason 

that the number of primary particles increased early in the low 

temperature flocculation experiments. 

It is suggested that there are two potential causes for the increase 

in the number of particles in the rapid mixed sample. First, it is 

possible that when the alum is added, it precipitates and the 

precipitates show up as an increase in primary particles. It is also 

possible that the aluminum does not form visible precipitates, but 

that submicron clay particles grow into a measurable size. In an 

effort to determine which of these mechanisms was most likely, two 

experiments were conducted. 

If the cause of the particles is simply aluminum precipitation, then 

the aluminum should precipitate whether the clay is present or not. 

The solution without the clay will be significantly more 

supersaturated than the solution with the clay, because when the 

surface of the clay is present it competes for the aluminum and 

removes it from solution. Thus, with the clay present the aluminum 

would tend to precipitate on the surface of the clay and not as free 
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particles in suspension. Therefore, if the particles do not appear 

In the absence of the clay, then submlcron clay particles are also 

Involved In the particle growth. In the two experiments, only the 

rapid mix phase of the coagulatlon/flocculatlon process was mn. 

This is because the particles are noticed at the end of the rapid mix 

cycle, and appear to be associated with the rapid mix. 

The following experimental conditions were used: 

o mixing intensity 250 RFM; G - 450 sec'^ 

o temperature - 5 "C 

o alum dose 5 mg/1 as alum 

o dilution water was tap water buffered with carbonate 

o constant pH and pOH conditions were both tested 

The kaollnlte clay particles were absent, and the rapid mix was 

extended to five minutes, instead of the usual one minute rapid mix, 

to allow ample time for reactions to take place. First, the constant 

pOH (pH - 7.41) results. The thin sample cells were loaded with 

homogenized, 1, 3, and 5 minute samples. The cells were viewed at 

474.609X, and there were no differences between any of the cells 

viewed. This indicates that no precipitates were formed which could 

be resolved by the microscope. The following turbidity changes were 

measured during the 5 minutes of rapid mixing. 

Initial Turbidity 0.18 NTU 
1 min Turbidity 0.23 NTU 
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5 min Turbidity 0.26 NTU 

This would Indicate that something did happen when the alum was 

added. However, the changes which took place were at a scale smaller 

than the microscope could resolve. 

During the constant pH (pH - 6.8) experiment, the cells were not 

filled, since it is unlikely that there would be visible precipitates 

at pH-6.8, if there were none at pH-7.41. The following turbidity 

changes were measured. 

Again, it appears that there is an effect, but it is difficult to 

determine what is causing the effect. It seems that at this pH the 

change which occurs may take place more slowly than it did at 

pH-7.41. 

It appears that no measurable primary particles are formed due to 

aluminum precipitation. Any increase in number concentration which 

is measured is probably caused by small clay particles Interacting 

with the alum and growing into the visible range. This phenomenon is 

probably also occurring at 20 'C, but at S *C the particles are 

growing into the visible range faster than they are growing out of 

Initial Turbidity 0.15 NTU 
0.17 NTU 
0.24 NTU 
0.28 NTU 

1 Hin Turbidity 
3 Min Turbidity 
5 Hin Turbidity 
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It. At 20 "C the particles are leaving the primary particle size 

range fast enough so there is no measurable net Increase in 

particles. Having said all of this, it is still not clear why the 5 

*C, constant pOH, alum experiments did not reproduce the flocculation 

efficiencies measured at 20 *C. 

Figure 110 contains confirmation of the alum results with ferric 

sulfate. Again, the constant pOH outperformed the constant pH. The 

performance at constant pOH at 5 *C was almost as good as the 

performance at 20 *C. Based on the data presented one would have to 

conclude that, when using metal salt coagulants in the flocculation 

process, constant pOH is the process control parameter of choice to 

minimize temperature effects. 

Breakup data 

Another measure of the optimal system chemistry control strategy is 

resulting floe strength. Figures 111, 112, and 113 contain evidence 

of floe strength at two temperatures, with two coagulants, with two 

impeller geometries, at constant pH and pOH with temperature. As 

mentioned previously Figures 111 and 112 present particle size 

distributions of various alum floe samples after breakup. The floe 

were formed by flocculating the suspension for 45 minutes in the high 

energy environment. The floe were then broken up by subjecting them 

to the same volume averaged e, that was used during rapid mixing. In 

Figure 111 the turbine Impeller was used to breakup the floe, and In 
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Figure 112 the S&S Impeller was used to breakup the floe. Note In 

Figure 111 that, when the breakup was performed with the turbine 

impeller, neither of the two alum floe formed at cold temperatures 

was capable of withstanding the stress. This is evidenced by the 

fact that the number of primary particles was very large after 

breakup. Also note that it was not possible to detect any 

differences in the strength of the two cold temperature alum floe 

uaing the turbine impeller, the number of primary particles formed 

during breakup was nearly identical at both constant pH and pOH. The 

floe formed at 20 *C were slightly stronger than the cold temperature 

floe, but it also experienced significant breakup. 

When the breakup was performed with the S&S (Figure 112), very few 

primary particles were produced from the floe formed at 20 'C. The 

particle size distribution (psd) data in Figure 93, is from the 20 "C 

S&S experiment, and Indicates the magnitude of the primary particle 

increase caused by the breakup. The 45 minute sample in Figure 93 

represents the psd in the tank immediately prior to breakup. Figure 

112 shows that the alum floe formed at S *C and at constant pOH was 

not as strong as the floe formed at 20 *C, but it was much stronger 

than the floe formed at S *C constant pH. This is evidenced by the 

relative number of primary particles after breakup shown in Figure 

112. The breakup of the 5 *C alum floe formed at constant pH was as 

severe with the S&S impeller as with the turbine impeller, indicating 

an extremely fragile floe. 
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This also confirms what was already expected, the localized shear 

field produced by the turbine is much more intense than the localized 

shear fields produced by the S&S at the same G or same e. 

Figure 113 presents breakup data for floe formed using ferric sulfate 

as the coagulant. Only the turbine impeller was used with the ferric 

floe. It is noted that the floe formed with the ferric sulfate is 

much stronger than the floe formed with the alum. The number of 

primary particles generated by the breakup routine was very small, 

and nearly equal, at 20 *C and at 5 *C with constant pOH. Both the 

alum floe and the iron floe were formed in what should have been the 

optimal A/D region for the two coagulants. The constant pH floe 

formed with iron and broken up with the turbine, is almost identical 

to the 20 "G alum floe broken up with the turbine. It is seen that 

even the weakest iron floe studied is as strong as the strongest alum 

floe studied. Table 27 reports the visual appearance of the reactor 

following the breakup test. 

The smoke referred to in the Table 27 is the iridescent Tyndall cloud 

which indicates the presence of high concentrations of colloidal 

particles. The table entry which says "some smoke", actually had 

very little smoke. It was also the only test which had clearly 

visible floe remaining. The fact that the floe were clearly visible 

means that they were at least 50-75 /im in size. 
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Table 27. Appearance of the reactor following 
breakup 

Geometry Test Conditions 

Alum Ferric Sulfate 

20 'G 5 'G 20 'G 5 'G 

PH pOH pH pOH 

Turbine 
no 
smoke smoke smoke 

no 
smoke smoke smoke 

S&S 
no 
smoke smoke 

some 
smoke 

The macroscopic observations in Table 27 agree well with the particle 

size distribution data presented. Again, the breakup observations 

Indicate that constant pOH appears to be the process control 

parameter of choice. 

Figure 114 Is a photograph of a large floe. This floe was In the 15 

minute sample of a 20 "C, low energy, turbine Impeller, alum 

experiment. The size bar on the photograph represents 50pm. Since 

the floe Is «250 /im across, the photograph actually represents a 

cross section of the floe. This photograph Is Included for the 

following reasons: 

o this two dimensional cross section hints at the actual 
complexity of the three dimensional structure, 



www.manaraa.com

354 

Figure 114. 2 Dimensional projection of a typical large kaolinite 
floe; the coagulant is alum in A/D, Z.P.«10 mV 
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o It highlights the difficulty of trying to monitor the large 
floe, with either the HIAC or the AIA, and demonstrates the 
necessity of monitoring primary particle removal, and 

o to provide insist into the actual floe growth mechanism, 
and the floe breakup mechanism. 

The appearance of this floe is representative of the larger floe at 

both high and low temperature. The low temperature floe were, in 

general, smaller, but they still were highly complex. Under a stereo 

scope it was possible to inspect the entire floe and the structure of 

the larger floe was universally reminiscent of the cluster-cluster 

aggregation (CCA) discussed in the literature review. Recall Figures 

61 and 62 from the Literature Review section on flocculation modeling 

studies. The structure of the floe in Figure 114, inspite of the 

poor image quality, Is strikingly similar to the cluster-cluster 

aggregation (CCA) images. It is possible to say that the CCA model 

produces a structure much closer to this floe than the particle-

cluster (FCA) model. It is not possible to say conclusively that a 

specific CCA model appears to describe the structure of the floe in 

Figure 114 better than another model. However, it does appear that 

the chemical model (see Figure 62) is the least appropriate. 

Observations made during the analysis of many samples throughout this 

study lead to the observation that early in the flocculation process 

the FCA mechanism dominates the floe growth process. Later in the 

flocculation process the dominant mechanism appears to become CCA. 
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It appears from Figure 114, that the floe consists of at least three 

levels of floe structure. The large floe, a second level floe which 

is 20-40 fim in diameter, and the primary particles. Table 31 

contains observations from the photographic record of the breakup 

experiments regarding maximum floe size prior to breakup and after 

breakup. The first number in each entry is the largest floe observed 

in the photographic record. The second value reported is the size of 

the large aggregates remaining after the reactor has been subjected 

to the increased mixing intensity to cause breakup. No values have 

been reported for the alum experiment at 20*C using the turbine 

impeller. This photographic record was not available. 

Note that earlier a maximum floe size observed in the reactor was 

reported. These two numbers are not necessarily the same, since the 

value reported in Table 28 represents a single floe in a sample cell, 

and the value reported earlier was the observed "average" maximum 

floe size in the reactor. "Average" in this ease implies that there 

were enough of this maximum size class of floe in the 18 liter 

reactor to be noticeable. 

The floe which produced smoke in the earlier breakup table were also 

the floe which broke up into aggregates which were smaller than 20 

pm. this agrees, intuitively, with what we expect looking at Figure 

114. 
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Table 28. Maximum floc size observed in photographic 
record prior to floc breakup and size of 
larger aggregates remaining after breakup 

Geometry Test Conditions 

Alum Ferric Sulfate 

20 "C 5 "C 20 'C 5 "C 

pH pOH pH pOH 

Turbine 
• 

75 
<20 

100 
<20 

200 
20-50 

100 
<20 

150 
20-50 

S&S 
300 
20-50 

50 
<20 

100 
30-50 

In the literature review It was pointed out that a floc continues to 

rupture until It reaches a floc level which can withstand the shear 

being Imposed upon It. If this Is the case, one would expect that a 

generation of a large number of primary particles would be 

accompanied by a maximum remaining floc size which Is quite small. 

One would also anticipate that If the floc ceased to break when the 

remaining floc reached the 20-50 fim size, very few primary particles 

would be produced. The data presented agree well with both of these 

expectations. 

The fact that the floc In this study are structured as shown In 

Figure 114, In addition to the breakup data In Table 28 and the 

breakup mode Just described, lead one to wonder again about the 
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maximum floe sizes measured by Morris (1983) and Morris and Knocke 

(1984). These authors report particle size distributions for floe 

formed with both alum and Iron at low temperatures. In all cases, 

the maximum floe size did not exceed 40 /im. They also reported floe 

size distributions for a series of tests performed at pH-7 and 1 "C, 

where alum doses of 1, 5, 10 mg/L as Al were used to flocculate 

turbidity. The maximum floe sizes reported for these tests were: 

Alum dose Floe Size (pm) 

1 42 
5 35 
10 22 

In addition to discussing the particle size distributions, the 

authors also discussed the size of the floe observed In the reactor. 

Based on the fact that the resolution limit of the human eye Is 

probably about 50-75 /im, one might speculate that, what has been 

reported here Is not the size of the aggregates In the suspension, 

but Is the size of the second level aggregates In the suspension. 

Perhaps, as the floe were counted, the shear In the counting cell 

disrupted the aggregates to a level which was strong enough to 

withstand the shear. Thus, the values given above may actually be 

more Indicative of floe strength at the various dosages, than of the 

maximum floe size In the reactor. 
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Miscellaneous résulta 

Figure 115 contains a comparison of results from three high energy 

alum flocculation runs at 20 *C, 5 *C, and 2 *C. The pOH, and e have 

been held constant. This comparison was inspired by the case study 

reported by Morris and Knocke (1984), in which flocculation 

efficiency deteriorated dramatically at temperatures less than 4.5 

"C. It is seen from this figure that under the present test 

conditions, constant pOH and constant e, there was no detectable 

difference between 5 "C and 2 *C. 

Figure 116 is a comparison of A/D and sweep floe at 20 *C, with 

ferric sulfate as the coagulant. This test was performed out of pure 

curiosity. The industry, for the most part, coagulates and 

flocculates water in the sweep floe region. This experiment 

illustrates a key difference between the sweep floe and A/D regions; 

process kinetics. The kinetics of the sweep floe mechanism are much 

faster than the kinetics of A/D mechanism. The sweep floe experiment 

was approaching steady state at 5 minutes, as opposed to 15 minutes 

in A/D experiment. The hump in the sweep floe curve appeared to be 

restructuring of the floe. 

Figure 117 is a comparison of two coagulants ; alum in the A/D region 

of coagulation, and MagnlFloc 573C. The alum appears to do a much 

better Job of sweeping up the primary particles. This phenomenon was 

seen regularly. The polymer formed large, strong floe, but was less 
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ALUM 
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20 
TIME (min.) 

5, Const. pOH • 2, Const. pOH 

Figure 115. Effect of temperatures near 0 *C on flocculatlon 
efficiency, turbine 
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FERRIC SULFATE 
Temperature 20 Deg. C 
Const. pOH & £ 
G = 60 1/sec. 

.40 -

.30 -

.80 -

, 30 50 

TIME (min.) 
# Adsorption/Destabilization; 4 mg/1; pH = 5.5 
• Sweep Floe; 10 mg/1; pH = 5.8 

Figure 116. Effect of sweep floe versus A/0 flocculatlon, turbine 

Temperature 20 Deg. C 
RM 1 min. ® G = 550 1/sec. 
Flocculation G = 60 1/sec. 
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Figure 117. Alum versus cationic polymer (MagniFloc 573c), turbine 
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efficient at picking up the primary particles. The alum on the other 

hand, formed a fairly weak floe, but did a good Job of picking up the 

primary particles. Hudson (1980) In a personal communication to 

Cleasby reported having good luck adding 0.1-0.2 mg/L of catlonic 

polymer 1 minute before the alum was added. It Is suggested that it 

might make sense to apply catlonic polymer first, and rapid mix long 

(2+ minutes) and hard (G - 1250 sec'^). Then apply alum to 

destabilize the remaining particles and rapid mix.short (1 minute) 

and easy (G - 500 sec'^), followed by flocculation. The polymer will 

provide a strong base structure for the floe, and the alum will help 

pick up the remaining primary particles. The rapid mix for the alum 

will actually act as an Intense flocculation stage for the polymer. 

Mwglngg 

Dissertations frequently end with a section titled future research 

needs or some such. This section is really such a section. An 

attempt will be made to look at some of the uglier questions raised 

by the data which has been collected, and to consider some of the 

apparent inconsistencies. The following paragraphs must really be 

labeled musings rather than discussion, the evidence presented is far 

from conclusive, and the system is so complex that it becomes 

difficult to sort things out and isolate cause and effect. Many of 

the questions raised in this section would be Interesting to address 

in a future modeling study, the data presented herein would provide a 

basis for model verification. 
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Let's go back an sharpen our mental picture of mass transport in the 

turbulent flow field, starting with the phenomena of turbulence. 

Recall the picture of vortex stretching presented in Figure 20. The 

diameter of the initial vortex can be considered to be roughly the 

same size as the impeller blade width. This vortex is stretched by 

interacting with other vortices around it, and the smallest diameter 

it stretches to is approximately the size of the Kolmogorov 

microscale. At the microscale, the vortex is bound by viscosity and 

the energy dissipates. Below the microscale, flocculation is the 

result of localized shear fields induced by the vortex stretching 

process. The smaller the microscale of turbulence, the more intense 

the localized velocity gradients, i.e., localized shear fields. 

Also recall from Figure 21, that the stretching process tends to be 

space filling, but, from Figure 25, most of the energy dissipation 

tends to occur where the turbulence is created in the reactor. So, 

although the process is locally space filling, there can also be 

spacial variability within the reactor. 

Below the microscale of turbulence, viscosity tends to be the great 

equalizer. Regardless of how much energy is put into the system at 

the production scale, it is quickly dissipated below the microscale. 

Recall from Figure 17, that energy dissipation is a function of ek^ 

where k is the wave number. If is 3 times as large, at a specific 
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wave number k^, in a flow field A, as eg in flow field B, then the 

energy in flow field A will be dissipated 3 times as fast at k^. 

Thus, at some distance in wave space below k^^ the difference between 

and «g will be less than a factor of 3. As long as is greater 

than eg, it will dissipate energy at a faster rate than eg. Given 

sufficient time, and assuming that the energy doesn't go to zero 

first, one would expect them to approach the same value. 

In thinking about the flocculation process, there is a fixed point of 

reference which is important, and that is the energy environment at 

the size scale of the primary particles. The question of Interest 

is, how do such factors as impeller geometry, temperature, and e 

affect the amount of energy present at the size scale of the 

particles. As noted earlier, a crude estimate of rj for the various 

flow fields at 20 *C would be: 

G - 60 sec'l G - 20 sec'l 

n-

Turbine 40 pm 71 /m 
Stake & Stator 129 Aim 214 fm 

One can see that in terms of wave space the energy is crossing into 

the viscosity dominated region a long way from the size of the 

primary particles. 
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At 5 'G the difference between i; and the primary particle size 

becomes even greater. For instance, If we assume again that the % 

calculated based on the volume averaged e, Is representative of the 

"true" tj for the stake and stator flow field, the following result is 

produced: 

G - 50 sec'l G - 18 sec'l (Constant «) 

Stake & Stator q - 175 /um ij - 291 nm 

In addition to moving the point in wave space where the energy is 

crossing Into the viscosity dominated region further from the size of 

the primary particles, the cold also increases the fluid viscosity. 

Thus, the energy which crosses the mlcroscale is going to be 

dissipated quicker. 

Now, lets think about the flocculatlon process in terms of some 

specific questions. Why does varying G have such a weak impact on 

flocculatlon efficiency (Figures 103 and 104)? Note that in both 

hl^ and low energy flocculatlon the primary particles are a long way 

in size from the mlcroscale. If we assume that in the turbine the e 

of the Impeller region is lOx as high as in the rest of the tank, 

then Tf in this region would be 40 pm for a G of 60 sec*^ and about 71 

im for a G of 20 sec'^. This brings the lower bound of turbulence 

closer to the particles, but still not down to the scale of the 

particles. The collision frequency in the impeller region of the 
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turbine would be higher but the collision frequency In the bulk of 

the reactor would be lower. 

The reason that a three fold change In G does not produce a larger 

change In flocculatlon efficiency may be related to a couple of 

things. First, the models which show a strong correlation between 

the rate of reduction In primary particle number concentration and G, 

all assume a particle suspension which is mono-dispersed, and in 

which differential sedimentation is assumed to be negligible. As 

flocculatlon proceeds this assumption becomes false, and we obviously 

need to reassess how we view the relationship between G and dnj^/dt. 

The S&S results at 20 *C were nearly identical at the two energy 

levels (Figure 104). This leads one to consider another factor which 

is really accentuated by the S&S geometry. This factor is the 

difference in length scales between the primary particles and the 

lower scale of turbulence. As has been shown earlier, the energy 

cascades below tj where viscosity dominates, and the relationship 

between viscosity and the energy that reaches the primary particles 

may be non-linear. The only suggestion I can make is that at 20 "C 

there is the same amount of energy actually reaching the primary 

particles under both mixing conditions. This suggestion may be true, 

to some extent for both Impeller geometries. 
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A second obvious question is why do both impellers perform nearly the 

same at 20 *C, when they behave differently at 5 *C? Figures 98, 99, 

and 100 indicate the impact of temperature on the turbine impeller. 

Figure 107 indicates the effect of temperature on the stake and 

stator impeller. Figures 105 and 106 show both impeller geometries 

at 5 * and 20 *C. It is possible that the reason the flocculation 

performance of both impellers is the same at 20 'C under both energy 

conditions, is a combination of the effects of fluid dynamics and 

floe strength. The turbine reactor is acting as three reactors of 

different size and energy input in parallel. In the region of the 

impeller, the energy is effectively driven to very small length 

scales. As long as the floe is strong enough so that it is not 

immediately broken, the volume of the reactor in the impeller region 

will produce rapid flocculation. The same is true of the impeller 

discharge area. The bulk flow region of the tank, which represents 

the majority of the tank volume, will produce less flocculation, but 

will provide volume for differential sedimentation and will not 

disrupt the floe. In the cold temperature setting the alum floe is 

weaker, and the breakup process near the impeller dominates reducing 

the efficiency of the flocculation. 

The S&S reactor is acting as a single reactor with a the same volume 

and energy input as the three reactors in parallel. However, the 

energy is distributed more uniformly throughout the reactor. See 

Figure 107. At 20 "C, the entire reactor volume is producing a 
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measurable, but relatively low level of flocculation. At 5 "C the 

energy Is dissipated more rapidly and much less of the energy is 

reaching the length scale of the primary particles. Because there is 

so little energy still available at the length scale of the primary 

particles, the flocculation proceeds very slowly. After a lag time 

some aggregates are formed which are large enou^ to be moved 

effectively by the energy available, and/or differential 

sedimentation. Once some minimum number of these aggregates are 

formed, the flocculation proceeds at a measurable rate. The lower 

the energy input to the system the less energy that reaches the small 

length scales. The less energy that reaches the small length scales 

the longer it takes for aggregates to form that are large enough to 

perform efficient flocculation by differential sedimentation, thus 

the longer observed lag period. With the turbine impeller at 5 "C 

there is very little lag for the high energy flocculation (Figure 

98), and rou^ly a 10 minute lag for the low energy flocculation 

(Figure 99). Using the S&S Impeller at 5 "C, there is a 10 minute 

lag with the high energy flocculation and a 20 minute lag with the 

low energy flocculation (Figure 107). The concept of differential 

sedimentation was brought up by Lawler (1989). According to Lawler 

(1989) as the suspension becomes poly-dispersed, differential 

sedimentation becomes an Important flocculation mechanism. In many 

practical systems, differential sedimentation becomes equal to or 

more important than shear flocculation. Because the range of shear 

gradients is large in the flow field generated by the turbine 
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Impeller, it may produce a system which is poly-dispersed more 

quickly. This would allow the differential sedimentation mechanism 

to become Important more quickly and produce a high rate of 

flocculation early in the test. 

The S&S impeller consistently out performs the turbine impeller late 

in the flocculation run (Figures 105 and 106). The cause of this may 

be two fold. First, the turbine impeller becomes breakup dominated 

much quicker than the S&S impeller does. Second, the S&S impeller 

produces a more uniform floe. This means that the number 

concentration of moderate size floe is quite high, rather than having 

a few big floe which are periodically broken up. Since flocculation 

is a function of number concentration and particle diameter, a large 

number of moderate size floe will continue removing primary particles 

more effectively than a few large particles. These Impeller 

characteristics Indicate that there mi^t be benefits in using 

turbine impellers in the early flocculation stages, and S&S impellers 

in the later stages of flocculation. It is interesting that some of 

the older water treatment plants were designed that way. 

Based on the preceding comments, one would expect that, at low 

temperature, high energy and low energy flocculation tests would 

again be nearly Identical. This is obviously not entirely the case 

for either the turbine (Figures 98, 99) or for the stake and stator 

(Figure 107). The differences exhibited by the turbine are very 
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likely the result of Increased breakup, which Is probably the result 

of reduced floe strength. The alum floe In Figures 98 and 99 are 

much weaker than the Iron floe In Figure 100, as shown the breakup 

comparisons in Figures 111, 112, and 113. It is also probable that 

the polymer floe are much stronger than the alum floe. Therefore, if 

the floe is sufficiently strong, the expectation voiced earlier is 

realized with the turbine impeller, because the localized Kolmogorov 

mieroseale is quite small. Thus, with a AT - 15 *C, the energy 

environment in the vicinity of the particles has not changed 

significantly. It is, perhaps, the fact that the energy environment 

has not changed and the alum floe has gotten weaker, which causes the 

problems with the alum floe. 

I believe that breakup is not causing the differences noted with the 

S&S impeller (Figure 107). There are a number of things which might 

be happening, but I believe the most important is the effect of the 

increased viscosity of the flow field structure. The Kolmogorov 

mieroseale has moved further from the primary particles in wave 

space, this means that the localized velocity gradient is reduced in 

magnitude. In addition, due to the increased viscosity, more of the 

turbulence is being dissipated in the immediate region of the 

impeller. This will effectively reduce the volume of the reactor 

which is active in the flocculation process. When the process 

finally accelerates it may be because the system has become 
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sufficiently poly-dispersed for differential sedimentation to become 

an important mechanism. 

All of the preceding comments could be explored, and perhaps 

verified, using a population balance model which compartmentalized 

the reactor into three segments, and contained the following terms: 

o a Brownian flocculation term, 

o a shear flocculation term, 

o a differential sedimentation flocculation term, 

o a breakup term, and 

o which accounted for the change in floe density with floe 
growth. 
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CONCLUSIONS 

The following conclusions are drawn from the research. 

1. When alum is added to water at low temperature the pH of 

the system remains depressed much longer than when the 

solution is warm. This appears to be due to the kinetics 

of the carbonic acid-C02 reaction, and not to the kinetics 

of the A1(OH)g formation. This does not imply that the 

rate of A1(0H)3 formation is not slower at the low 

temperature. It simply implies that the time scales of the 

carbonic acid partitioning reaction are so much longer than 

the time scales involved in the A1(0H)3 reaction, that the 

buffer system reaction controls the pH depression 

phenomena. 

2. The HIAC particle counter, using the 1-60 pm sensor, 

consistently under-counted the number of particles smaller 

than 2.5 im. This under-counting is evident in both the 

standard latex spheres suspensions and in the clay 

suspensions. 

3. Under strong floe conditions, the normalized HIAC 

flocculation data for primary particle disappearance during 
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flocculatlon correlated reasonably well with the AIA 

flocculatlon data. This leads one to believe that the HIAC 

may be a useful tool for optimizing the flocculatlon 

procnss if the floe system is robust. 

Under weak floe conditions, the normalized HIAC 

flocculatlon data correlated very poorly with the AIA data, 

probably because of floe breakup in the HIAC counting cell 

area. This indicates that although the HIAC may be useful 

under some circumstances, it is not universally useful for 

studying flocculatlon. The user must be very careful, and 

should check the HIAC data against optical microscope data. 

Flocculatlon efficiency at 20 "C, as measured by the 

removal of primary particles, was not sensitive to the 

geometry of the impeller used in the flocculator. 

At 5 *C the geometry of the impeller was much more 

important. Very likely, this observation is because of the 

primary particle size with respect to the size of the local 

Kolmogorov mlcroscale of turbulence, t;. 

Impeller geometry is particularly important, because of its 

impact on breakup of the floe. The turbine impeller caused 

much more floe breakup than the stake and stator impeller. 



www.manaraa.com

374 

It was not possible to demonstrate that one measure of 

turbulent Intensity Is better than another, I.e., G, 17, and 

e, when attempting to correct mixing Intensity for 

temperature effects. 

With metallic coagulants, the use of constant pOH Is the 

appropriate parameter, as opposed to constant pH, to use in 

correcting system chemistry for temperature effects. This 

Is, In effect, maintaining the hydroxyl ion concentration 

constant as the temperature changes. With iron as the 

primary coagulant, the flocculation results at 20 »C & 5 °C 

were nearly Identical when the pOH was held constant. The 

flocculation efficiency was markedly decreased at cold 

temperature when the pH was held constant. With alum as 

the coagulant, flocculation at 5 *C with constant pOH 

yielded much better efficiency than constant pH conditions, 

but the flocculation efficiency was still not as good as 

the efficiency at 20 °C. 

The alum floe was significantly weaker than the iron floe 

under all conditions tested. The iron floe at 20 "C and at 

5 *C with constant pOH showed similar strengths, but the 

iron floe at 5 *C with constant pH was much weaker than the 

iron floe formed at 20 *C. The alum floe at 20 "C was 
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considerably stronger than the alum floe formed at 5 "G. 

Of the alum floe formed at 5 *C, the floe formed at 

constant pOH was stronger than the floe formed at constant 

pH. 

As a final overall conclusion, the system chemistry was 

found to be much more important than the choice of energy 

input parameter on flocculatlon kinetics at different water 

temperatures. With appropriate system chemistry, the 

effect of cold water temperature on flocculatlon kinetics 

was eliminated using ferric sulfate or eatlonie polymer as 

the primary coagulant. 



www.manaraa.com

376 

BIBLIOGRAPHY 

Abramowltz, M. Microscope Basics and Bevond. Volume 1. Olympus 
Corp., Lake Success N.Y., 1985. 

Adler, P. M. Heterocoagulatlon In Shear Flow. J. Colloid and 
Interface Science, 83, No. 1 (September, 1981): 106-115. 

Akers, R. J. Experimental Methods, pp. 131-163. In K. J. Ives, 
ed. The Scientific Basis of Flocculatlon. Nato Advanced Study 
Institute Series, Series E, Applied Science - No. 27. Sljthoff & 
Noorhoff, Netherlands, 1978. 

Al-Anl, M., J. M. McElroy, C. P. Hlbbler, and D. W. Hendricks. 
Filtration of Glardla Cysts and Other Substances. Volume 3. 
Rapid-Rate Filtration, Project Summary, EPA-600-S2-85-027, 
September, 1985. 

Al-Layla, M. A., E. J. Mlddlebrooks, and D. B. Porcella. Effect 
of Temperature on Algal Removal by Alum Coagulation. Research 
Report # PRW6139-1. Utah Water Research Laboratory, College of 
Engineering, Utah State University, Logan, Utah, July, 1974. 

Allen, T. Particle Size Measurement. Third Edition. Powder 
Technology Series. Chapman and Hall, New York, 1981. 

Ambegaonkar, A. S., A. S. Dhruv, and L. L. Tavlarides. 
Fluid-Particle Hydrodynamics in Agitated Vessels. Can. J. Chem. 
Eng., 55 (August, 1977); 414-420. 

Amlrtharajah, A. Rapid Mixing and Coagulation Processes. 
pp. 19-30. In AWWA Seminar Proceedings: Influence of Coagulation 
on the Selection. Operation, and Performance of Water Treatment 
Facilities. AWWA, Denver, June, 1987. 

Amlrtharajah, A. Research at Montana State University into 
Coagulation, Flocculatlon, and Mixing. Presented at CH^M-Hlll 
Cold Water Coagulation Seminar, Denver, Colo., July 13, 1984. 

Amlrtharajah, A. Initial Mixing, pp. 1-22. In AWWA Seminar 
Proceedings: Coagulation Filtration: Back to the Basics. AWWA, 
Denver, June, 1981. 

Argaman, Y. A. Pilot-Plant Studies of Flocculatlon. JAWWA, 63, 
No. 12 (December, 1971): 775-777. 

Argaman, Y., and W. J. Kaufman. Turbulence in Orthoktnetic 



www.manaraa.com

377 

Flocculatlon. SERL Report No. 68-5. Sanitary Engineering 
Research Laboratory, University of California, Berkeley, Calif., 
July, 1968. 

Argaman, Y., and W. J. Kaufman. Turbulence and Flocculation. 
J. Sanitary Engineering Division Proceedings of the American 
Society of Civil Engineers, 96, SA 2 (April, 1970): 223-241. 

ASTH. Designation F312-69 (Re-approved 1980). Microscopical Sizing 
and Counting Particles From Aerospace Fluids on Membrane Filters. 
In Annual Book of ASTH Standards. Vol. 15.03. American Society 
for Testing and Materials, Philadelphia, Penn., 1986. 

ASTM. Designation E 20-85. Standard Practice for Particle Analysis 
of Particulate Substances in the Range of 0.2 to 0.75 Micrometers 
by Optical Microscope. In Annual Book of ASTM Standards. Vol. 
14.02. American Society for Testing and Materials, Philadelphia, 
Penn., 1985. 

Baes, C. F., and R. E. Mesmer. The Hvdrolvsls of Cations. John 
Wiley and Sons, New York, 1976. 

Baylis, J. R. Silicates as Aids to Coagulation. JAWWA, 28, No. 7 
(July, 1936): 1355-1396. 

Beard II, J. D., and T. S. Tanaka. A Comparison of Particle Counting 
and Nephelometry. JAWWA, 69, No. 10 (October, 1977): 533-538. 

Beck, C. The Microscope. D. Van Nostrand Co., New York, 1924. 

Bendek, A., and J. J. Bancsi. Laboratory Evaluation of Polymeric 
Flocculants. JEED, 102, No. EEl (February, 1976): 17-28. 

Bennett, R. H., and M. H. Hulbert. Clav Microstructure. D. Reidel 
Publishing Company, Boston, 1986. 

Bhole, A. G., and P. Limaye. Effect of Shape of Paddle and 
Container on Flocculatlon Process. IE (I) Joumal-EN, 57 
(February, 1977): 52-57. 

Birkner, F. B., and J. J. Morgan. Polymer Flocculation Kinetics of 
Dilute Colloidal Suspensions. JAWWA, 60, No. 1 (February, 1968): 
175-191. 

Black, A. P., and C. Chen. Electrokinetic Behavior of Aluminum 
Species in Dilute Dispersed Kaolinite Systems. JAWWA, 59, No. 9 
(September, 1967): 1173-1183. 

Boadway, J. D. Dynamics of Growth and Breakage of Alum Floe in the 



www.manaraa.com

378 

Presence of Fluid Shear. JEEO, 104, No. EES (October, 1978): 
901-915. 

Botet, R., R. Julllen, and H. Kolb. Cluster Aggregation. 
pp. 255-258. In L. Fletronero, and E. Tosattl, eds. Fractals in 
Physics. Elsevier Science Publishers, Netherlands, 1986. 

Brace, R., and E. Hatejevlc. Aluminum Hydrous Oxide Sols. 
I. Spherical Particles of Narrow Size Distribution. J. Inorg. 
Nucl. Chem., 35 (1973): 3691-3705. 

Bradshaw, P. An Introduction to Turbulence and its Measurement. 
Pergamon Press, New York, 1971. 

Brink, D. R., S. Choi, H. Al-Anl, and D. W. Hendricks. Bench Scale 
Evaluation of Coagulants for Low Turbidity Water. JAWWA, 80, No. 
4 (April, 1988): 199-204. 

British Standard 3406. Part 4, Methods for Determination of Particle 
Size Distribution; Optical Microscope Method. British Standards 
House, London, 1984. 

Brochard, F., and P. G. DlGennes. Kinetics of Polymer Dissolution. 
Physlco Chemical Hydrodynamics (PCH), 4, No. 4 (1983): 313-322. 

Brodkey, R. S. The Phenomena of Fluid Motion. Addlson-Wesley 
Series In Chemical Engineering. Addlson-Wesley, Reading, 
Massachusetts, 1967. 

Burgess, J. Ions in Solution: Basic Principles of Chemical 
Interactions. Ellis-Horwood Limited, Chichester, John Wiley & 
Sons, New York, 1988. 

Calbrese, R. V. , and C. M. Stoots. Flow In the Impeller Region 
of a Stirred Tank. Chemical Engineering Progress, 85, No. 5 
(May, 1989): 43-50. 

Camp T. R. Floe Volume Concentration. JAWWA, 60, No. 6 (June, 
1968): 656-673. 

Camp, T. R., and Stein, P. C. Velocity Gradients and Internal Work 
In Fluid Motion. J. Boston Society of Civil Engineers, 30, No. 4 
(October, 1943): 219-237. 

Camp, T. R., B. A. Root, and B. V. Bhoota. Effects of Temperature 
on the Rate of Floe Formation. JAWWA, 32, No. 11 (November, 
1940): 1913-1927. 

Clark, M. M. Drop Break-up in a Turbulent Flow. Doctoral 



www.manaraa.com

379 

Dissertation. Johns Hopkins University, 1985a. 

Clark, M. H. Critique of Camp and Stein's RMS Velocity Gradient. 
JEED, 111, No. 6 (December, 1985b): 741-754. 

Gleasby, J. L. Is Velocity Gradient a Valid Turbulent Flocculatlon 
Parameter ? JEED, 110, No. 5 (October, 1984): 875-897. 

Gleasby, J. L., G. Slndt, H. Dharmarajah, E. R. Baumann. Design 
and Operation Guidelines for Optimization of the High Rate 
Filtration Process. Quarterly Report Number 2 for period between 
November 1-February 1, 1988. ERI, Iowa State University. 

Cohen, J., Z. Prlel, and Y. Rabin. Viscosity of Dilute 
Polyelectrolyte Solutions. J. Chem. Phys., 88, No. 11 (June, 
1988): 7111-7116. 

Corrsln, S. Turbulent Flow. American Scientist, 49, (1961): 
300-325. 

Corrsln, S. Outline of Some Topics In Homogeneous Turbulent Flow. 
J. Geophys. Res., 64, No. 12 (December, 1959): 2134-2150. 

Cutter, L. A. Flow and Turbulence In a Stirred Tank. A. I. Ch. E. 
J., 12, No. 1 (January, 1966): 35-44. 

Dann, R. Ferric Chloride Favored Over Alum for Cost Saving 
Coagulation. Waterworld News, (March/April, 1988): 16-17. 

Davis, K. S., and J. A. Day. Water the Mirror of Science. Science 
Study Series S-18. Anchor Books, Doubleday and Company, Inc., 
Garden City, New York, 1961. 

Deer, W. A., R. A. Howie, and J. Zussman. An Introduction to Rock-
forming Minerals. Longman Group Limited, London, 1966. 

Delichatslos, M. A., and Probsteln, R. F. Coagulation in Turbulent 
Flow: Theory and Experiment. J. Colloid and Interface Science, 
51, No. 3 (June, 1975): 394-405. 

Dempsey, B.A. Chemistry of Coagulants, pp. 19-30. In AWA Seminar 
Proceedings:Influence of Coagulation on the Selection. Operation. 
and Performance of Water Treatment Facilities. AWWA, Denver, 
June, 1987. 

Dentel, S. K. Optimizing Coagulant Additions From Laboratory 
and Field Test Methods, pp. 49-88. In AWWA Seminar Proceedings: 
Influence of Coagulation on the Selection. Operation, and 



www.manaraa.com

380 

Performance of Water Treatment Facilities. AWA, Denver, June, 
1987. 

Dentel, S. K., and J. H. Gossett. Mechanisms of Coagulation with 
Aluminum Salts. JAUWA, 80, No. 4 (April, 1988): 187-198. 

Dentel, S. K., J. J. Resta, P. V. Shetty, and T. A. Sober. 
Simulation of Organic Folyelectrolyte Effects in Water Treatment, 
pp. 1621-1649. In AWWA Annual Conference Proceedings, Denver, 
Colorado. AWWA, Denver, 1986. 

Drobny, N. L. Effect of Paddle Design on Flocculation. J. Sanitary 
Engineering Division ASCE, 89, No. SA2 (April, 1963): 17-30. 

Duluth Water Utility. Personal Communication. Unpublished 
flocculation system operations control data from Duluth, 
Minnesota water treatment plant, treating Lake Superior Water. 
These data were obtained during a plant visit in 1987. 

Edzwald, J. K. Coagulation, pp. 23-44. In AWWA Seminar 
Proceedings: Coagulation and Filtration. Back to the Basics. 
AWWA, Denver, June, 1981. 

Eilbeck, W. J., and G. Mattock. Chemical Processes In Wastewater 
Treatment. Ellis-Horwood Limited, Chichester, 1987. 

Ernst, M. H. Kinetics of Clustering in Irreversible Aggregation. 
pp. 289-302. In L. Pletronero, and E. Tosatti, eds. Fractals In 
Physics. Elsevier Science Publishers, Netherlands, 1986. 

Family, F. Dynamics of Aggregation Processes, pp. 231-236. 
In H. E. Stanley, and N. Ostrowsky, eds. On Growth and Form 
Fractal and Non-fractal Patterns In Phvalcs. Martlnus Nljhoff 
Publishers, Netherlands, 1986. 

Farlnato, Ray. Personal communication with technical representative. 
Letter, 6/24/88. American Cyanamld, Stamford, Conn. 06904. 

Farlnato, Ray. Personal communication with technical representative. 
Telephone conversation, 6/20/88. American Cyanamld, Stamford, 
Conn. 06904. 

Feder, J. Fractals. Plenum Press, New York, 1988. 

Feder, J., and T. Jossang. Aggregation Kinetics of Immunoglobulin, 
pp. 33-42. In G. Grlmvall, ed. Physica Scrlpta, Vol T13, The 
General Conference of the Condensed Matter Division of the 
European Physical Society. Royal Swedish Academy of Sciences, 
Stockholm, Sweden, 1986. 



www.manaraa.com

381 

Francois, R. J. Growth Kinetics of Hydroxide Floes. JAWWA, 80, 
No. 6 (June, 1988): 92-96. 

Francois, R. J., and A. A. Van Haute. Floe Strength Measurements 
Giving Experimental Support for a Four Level Hydroxide Floe 
Structure, pp. 221-234. In Fawlowskl, Verdler, and Lacey, eds. 
Proceedings of an International Conference - Chemistry for 
Protection of the Environment. September 19-25, Toulouse, 
France. Elsevier, 1983. 

Franks, F. Water. The Royal Society of Chemistry, London, 1983. 

Franks, F. Water, a Comprehensive Treatise: Volume 1. The Phvslcs 
and Phvslcal Chemistry of Water. Plenum Press, New York, 1972. 

Frledlander, S. K. Smoke. Dust, and Haze. John Wiley & Sons, 
New York, 1977. 

Frost, W., and T. H. Moulden. Handbook of Turbulence; Volume 1: 
Fundamentals and Applications. Plenum Press, New York, 1977. 

Gallegos, C. L., and R. G. Henzel. Submlcron Size Distribution of 
Inorganic Suspended Solids In Turbid Waters by Photon Correlation 
Spectroscopy. Water Research, 23, No. 4 (April, 1987): 596-602. 

Ghosh, H. M., C. D. Cox, and T. M. Prakash. Polyelectrolyte 
Selection for Water Treatment. JAWWA, 77, No. 3 (March, 1985): 
67-73. 

Glbbs, R. J. Floe Breakage During HIAC Light-blocking Analysis. 
Environmental Science and Technology, 16, No. 5 (May, 1982): 298-
299. 

Glaberson, W. I., and K. W. Schwarz. Quantized Vortices 
in Superfluld Helium-4. Physics Today, 40, No. 2 (February, 
1987): 54-60. 

Glasgow, L. A., Personal communication. Correspondence with 
Dr. J. L. Cleasby. Iowa State University, Kansas State 
University Chemical Engineering Dept., Manhattan, Kansas, 
February 7, 1985. 

Glasgow, L. A., and J. Hsu. Floe Characteristics in Water and 
Wastewater Treatment, pp. 285-303. In Particulate Science and 
Technology, 2. Hemisphere Publishing Company, 1984. 

Glasgow, L. A., and Y. H. Kim. Characterization of Agitation 



www.manaraa.com

382 

Intensity In Flocculatlon Processes. JEED, 112, No. 6 (December, 
1986): 1158-1163. 

Goren, S. L. The Hydrodynamlc Forces on Touching Spheres Along the 
Line of Centers Exerted by a Shear Field. J. Colloid and 
Interface Science, 36, No. 1 (May, 1971): 94-96 

Graf, J. Sizing with Modem Image Analyzers. In Stockham and 
Fochtman, eds. Particle Size Analysis. Ann Arbor Science 
Publishers, Ann Arbor, Mich., 1977. 

Grasso, D., and W. J. Weber. Ozone-Induced Particle Destablllzation. 
JAMWA, 80, No. 8 (August, 1988): 73-81. 

Gregory, J. Flocculatlon by Polymers and Polyelectrolytes. 
pp. 163-181. In Th. F. Tadros, ed. Solld/Llouid Dispersions. 
Academic Press, Orlando, Fl., 1987. 

Gregory, J. Flocculatlon by Inorganic Salts, pp. 89-100. In K. J. 
Ives, ed. The Scientific Baals of Flocculatlon. Nato Advanced 
Study Institute Series, Series E, Applied Science - No. 27. 
Sijthoff ft Noorhoff, Netherlands, 1978a. 

Gregory, J. Effects of Polymers on Colloid Stability, pp. 101- 130. 
In K. J. Ives, ed. The Scientific Basis of Flocculatlon. Nato 
Advanced Study Institute Series, Series E, Applied Science - No. 
27. Sijthoff & Noorhoff, Netherlands, 1978b. 

Gregory, J. Flocculatlon. pp. 55-99. In R. Wakeman, ed. Progress 
in Filtration and Separation 4. Elsevier, Amsterdam, 1986. 

Groves, M.J. Particle Size Characterization In Dispersions. J. 
Dispersion Science and Technology, 1, No. 1 (1980): 97-124. 

Gunkel, A. A., and M. E. Weber. Flow Phenomena in a Stirred Tank. 
Part I: The Impeller Stream. A.I.Ch.E. J., 21, No. 5 (September, 
1975): 931-948. 

Haarhoff, J. Direct Filtratipn gf Pftlpfpiig fçpnedefmvf 
Suspensions for Potable Water Treatment. Doctoral Dissertation. 
Iowa State University, Ames, Iowa, 1988. 

Haarhoff, J., and J. L. Cleasby. Comparing Aluminum and Iron 
Coagulants for In-line Filtration of Cold Water. JAWWA, 80, No. 
4 (April, 1988): 168-175. 

Hahn, H. H., and W. Stumm. Coagulation by Al(III); the Role of 
Adsorption of Hydrolyzed Aluminum in the Kinetics of Coagulation. 
Chapter 9. In Adsorption from Aqueous Solution. Advances in 



www.manaraa.com

383 

Chemistry Series no. 79. American Chemical Society, Washington, 
D. C., 1968a. 

Hahn, H. H., and W. Stunm. Kinetics of Coagulation with Hydrolyzed 
Al(III). J. Colloid and Interface Science, 28, No. 1 (September, 
1968b): 134-144. 

Hall, E. S. The Zeta Potential of Aluminum Hydroxide In Relation to 
Water Treatment Coagulation. J. Appl. Chem., 15 (May, 1965): 
197-205. 

Hannah, S. A., J. M. Cohen, and G. G. Robeck. Measurement of Floe 
Strength by Particle Counting. JAWWA, 59, No. 7 (July, 1967a): 
843-858. 

Hannah, S. A., J. H. Cohen, and G. G. Robeck. Control Techniques for 
Coagulation-Filtration. JAWWA, 59, No. 9 (September, 1967b): 
1149-1163. 

Harris, H., W. J. Kaufman, and R. B. Krone. Orthoklnetlc 
Flocculatlon in Water Treatment. JEED, 92, No. SA6 (December, 
1966): 95-111. 

Harris, H. S. Orthoklnetlc Flocculatlon of Polvdlsperaed Systems. 
Doctoral Dissertation. University of California-Berkeley, 1966. 

Harwood, C. F. Problems in Particle Slzing-The Effect of Particle 
Shape. • In Stockham, and Fochtman, eds. Particle Size Analysis. 
Ann Arbor Science Publishers, Ann Arbor, Mich., 1977. 

Hayden, P. L., and A. J, Rubin. Systematic Investigation of 
the Hydrolysis and Precipitation of Aluminum (III), pp. 317-
381. In A. J. Rubin, ed. Aqueous-Environmental Chemistry of 
Metals• Ann Arbor Science Publishers, Inc., Ann Arbor, Michigan, 
1974. 

Herdan, G., and M. L. Smith. Small Particle Statistics. Elsevier 
Publishing Company, New York, 1963. 

Hiemenz, P. C. Principles of Colloid and Surface Chemistry. 
Second edition. Marcel Dekker Inc., New York, 1986. 

Hinze, J.O. Turbulence. McGraw - Hill Series In Mechanical 
Engineering. Second edition. McGraw - Hill, Inc., New York, 
1975. 

Hinze, J.O. Fundamentals of the Hydrodynamlc Mechanisms of Splitting 
in the Dispersion Process. A.I.Ch.E. J., 1, No. 1 (September, 
1955): 289-295. 



www.manaraa.com

384 

Hlrtzel, C. S., and R. Rajagopalan. Colloidal Phenomena; Advanced 
Topics. Noyes Publications, Park Ridge, NJ, 1985. 

Hong-Xiao, T., and W. Stumm. The Coagulating Behavior of Fe (III) 
Polymeric Species-II; Preformed Polymers in Various 
Concentrations. Water Research, 21, No. 1 (1987a): 123-128. 

Hong-Xiao, T., and W. Stumm. The Coagulating Behavior of Fe (III) 
Polymeric Specles-I; Preformed Polymers by Base Addition. Water 
Research, 21, No. 1 (1987b): 115-121. 

Honig, E. P., 6. J. Roebersen, and P. H. Wiersema. Effect of 
Hydrodynamlc Interaction on the Coagulation Rate of Hydrophobic 
Colloids. J. Colloid and Interface Science, 36, No. 1 (Hay, 
1971): 97-109. 

Honig, E. P., and P. H. Hul. Tables and Equations of the Diffuse 
Double Layer Repulsion at Constant Potential and at Constant 
Charge. J. Colloid and Interface Science, 36, No. 2 (June, 
1971): 258-272. 

Hudson Jr., H. E. Physical Aspects of Flocculatlon. JAWWA, 57, 
No. 7 (July, 1965): 885-892. 

Hudson Jr., H. E. Water Clarification Processes. Practical Design 
and Evaluation. Van Nostrand and Relnhold Company, New York, 
1981. 

Hudson, H. Personal communication to Dr. J. L. Cleasby. Dept. of 
Civil and Construction Engineering. Iowa State University Ames, 
Iowa, July, 15, 1980. 

Hutchinson, C.W. On-Line Particle Counting Improves Filter 
Efficiency. In Proceedings of ISA International Conference and 
Exhibit, Instrument Society of America, Research Triangle Park, 
N. C., 1984. 

Hutchinson, W. and P. D. Foley. Operational and Experimental Results 
of Direct Filtration. JAWWA, 66, No. 2 (February, 1974): 79-87. 

Hynes, H. B. N., The Ecology of Running Water. University of 
Toronto Press, Toronto, Canada, 1970. 

Israelachvlli, J. N., Intermolecular and Surface Forces: with 
Applications to Colloidal and Biological Systems. Academic 
Press, Orlando, Fl., 1985. 

Ives, K. J. Experiments in Orthokinetic Flocculatlon. pp. 196-220. 



www.manaraa.com

385 

In J. Gregory, ed. Solld-Lioutd Separation. Ellis Horwood 
limited, Chichester, England, 1984. 

Ives, K. J. Rate Theories, pp. 37-61 In K. J. Ives, ed. The 
Scientific Basis of Floeculatlon. Nato Advanced Study Institute 
Series, Series E, Applied Science - No. 27. Sljthoff & Noorhoff, 
Netherlands, 1978. 

Ives, K. J., and A. G. Bhole. Theory of Flocculatlon for Continuous 
Flow System. JEED, 99, No. EEl (February, 1973): 17-34. 

Ives, K. J., and M. A. Dlbounl. Orthoklnetlc Flocculatlon of Latex 
Microspheres. Chem Eng. Scl. 34 (1979): 983-991. 

James, J. Light Microscope Techniques In Biology and Medicine. 
Martlnus Nljhoff Medical Division, Netherlands, 1976. 

Johnson, P. N., and A. Amlrtharajah. Ferric Chloride and Alum as 
Single and Dual Coagulants. JAWA, 75, No. 5 (May, 1983): 232-
239. 

Julllen, R., and R. Botet. Aggregation and Fractal Aggregates. 
World Scientific, Singapore, 1987. 

Kavanau, J. L. Water and Solute Interactions. Holden-Day, Inc., 
San Francisco, 1964. 

Kavanaugh, M. C., C. H. Tate, A. R. Trussell, R. R. Trussell, and 
G. Treweek. Use of Particle Size Distribution Measurements for 
Selection and Control of Solid/Liquid Separation Processes. 
Chapter 14. In Kavanaugh and Leckle, ed. Particulates In Water. 
Advances In Chemistry Series 189. American Chemical Society 
Publishers, Washington, D. C., 1980. 

Kim, Y. H., and L. A. Glasgow. Simulation of Aggregation and 
Breakage in Flocculatlon Processes, pp. 82-85. In Proceedings 
of World Congress III of Chemical Engineering. Tokyo, Japan, 
1986. 

Knocke, W. R., S. West, and R. C. Hoehn. Effects of Low Temperature 
on the Removal of Trlhalomethane Precursors by Coagulation. 
JAWWA, 78, No. 4 (April, 1986); 189-195. 

Koh, P. T. L. Compartmental Modelling of a Stirred Tank for 
Flocculatlon Requiring a Minimum Critical Shear Rate. Chemical 
Engineering Science, 39, No. 12 (1984); 1759-1764. 

Koh, P. T. L., J. R. G. Andrews, and P. H. T. Uhlherr. Modeling 



www.manaraa.com

386 

Shear Flocculation by Population Balances. Chemical Engineering 
Science, 42, No. 2 (1987): 353-362. 

Koh, F.T.L., Andrews, J.R.G., Uhlherr, P.H.T. Flocculation In 
Stirred Tanks. Chemical Engineering Science, 39, 6 (June, 1984); 
975-985. 

Kolb, M., R. Botet, and R. Julllen. Scaling Klnetlcally Growing 
Clusters. Physical Review Letters, 51, No. 13 (September, 1983): 
1123-1126. 

Kolb, M. Reversibility In Cluster Aggregation, pp. 263-266. In 
L. Pletronero, and E. Tosattl, eds. Fractals In Phvslcs. 
Elsevier Science, Netherlands, 1986. 

Kolb, M., R. Botet, R. Julllen, and H. J. Herrmann. Flocculation and 
Gelation In Cluster Aggregation, pp. 222-226. In H. E. Stanley, 
and N. Ostrowsky, eds. On Growth and Form Fractal and 
Non-fractal Patterns in Phvslcs. Martlnus Nljhoff, Netherlands, 
1986. 

La Brecque, M. Fractals In Physics; Part II of a Special Report. 
Mosaic, 18, No. 2 (1987): 23-41. 

Lagvankar, A. L., and R. S. Gemmell. A Size Distribution 
Relationship for Floes. JAWWA, 60, No. 9 (September, 1968): 
1040-1046. 

Lawler, D. F. Particle Size Distributions: Measurement In 
Flocculation. pp. 19-30. In AWWA Seminar Proceedings: Influence 
of Coagulation on the Selection. Operation, and Performance of 
Water Treatment Facilities. AWWA, Denver, June, 1987. 

Lawler, D. F. The Relative Insignificance of G. In AWWA Annual 
Conference Proceedings. Los Angeles, Calif. AWWA, Denver, June, 
1989. 

Lawler, D. F., E. Izurleta, and C. Kao. Changes In Particle Size 
Distribution in Batch Flocculation. JAWWA, 75, No. 12 (December, 
1983): 604-611. 

Lawler, D. F., C. R. O'Mella, and J. E. Toblason. Integral Water 
Treatment Plant Design: From Particle Size to Plant Performance. 
Chapter 16. In Kavanaugh, and Leckie, eds. Particulates in 
Water. Advances in Chemistry Series 189. American Chemical 
Society Publishers, Washington, D. C., 1980 



www.manaraa.com

387 

Lelbovlch, S., and J. L. Lumley. Complex Fluid Motion: Models and 
Metaphors. Chaos and Physical Systems, Engineering Cornell 
Quarterly, 20, No. 3 (1986): 27-36. 

Lelpold, C. Mechanical Agitation and Alum Floe Formation. 
JAWUA, 26, No. 8 (August, 1934): 1070-1084. 

Lemont Scientific Inc. DB-10 Manual: Version 1984.6 f85B) (With 
Update Material for the OASYS System). Lemont Scientific Inc., 
Science Park, Penn., 1984. 

Letterman, R. 0., and S. G. Vanderbrook. Effects of Solution 
Chemistry on Coagulation with Al(III); Significance of the 
Sulfate Ion and pH. Water Research, 17 (1983): 195-204. 

Letterman, R.D., M. Tabatabale, and R. S. Ames, Jr. The Effect 
of the Bicarbonate Ion Concentration on Flocculatlon with 
Aluminum Sulfate. JAWtfA, 71, No. 8 (August, 1979): 467-472. 

Letterman, R. D., S. G. Vanderbrook, and P. Srlcharoenchalklt. 
Electrophoretlc Mobility Measurements In Coagulation with 
Aluminum Salts. JAWtfA, 76, No. 1 (January, 1982): 44-51. 

Leu, R., and M. M. Ghosh. . Polyelectrolyte Characteristics and 
Flocculatlon. JAWWA, 80, No. 4 (April, 1988): 159-167. 

Leyvraz, F. Rate Equation Approach to Aggregation Phenomena. 
pp. 136-144. In H. E. Stanley, and N. Ostrowsky, eds. On Growth 
and Form Fractal and Non-fractal Patterns In Phvslcs. Martinus 
Nljhoff, Netherlands, 1986. 

Lleberman, A. Fine Particle Characterization Methods in Liquid 
Suspensions. In J. K. Bedow, ed. Particle Characterization in 
Technology. Volume 1; Applications and Microanalysis. CRC Press, 
Inc., Boca Raton, Florida, 1984. 

Lyklema, J. Structure of the Solid/Liquids Interface and the Double 
Layer. In Th. F. Tadros, ed. Solld/Liauid Dispersions. 
Academic Press, Orlando, Fl., 1987. 

Mandelbrot, B. B. The Fractal Geometry of Nature. Revised. W. H. 
Freeman and Company, New York, 1983. 

Mangravlte, F. J. Synthesis and Properties of Polymers Used in Water 
Treatment, pp. 1-16. In AWWA Seminar Proceedings: Use of 
Organic Polyelectrolytes in Water Treatment. AWWA, Denver, 1983. 

Matljevic, E., and P. Scheiner. Ferric Hydrous Oxide Sols: III. 



www.manaraa.com

388 

Preparation of Uniform Particles by Hydrolysis of Fe (III) -
Chloride, -Nitrate, -Perchlorate Solutions. J. Colloid and 
Interface Science, 63, No. 3 (March, 1978): 509-524. 

Matljevlc, E., and B. Tezak. Coagulation Effects of Aluminum Nitrate 
and Aluminum Sulfate on Aqueous Sols of Silver Halide In Statu 
Nascendi. Detection of Polynuclear Complex Aluminum Ions by 
Means of Coagulation Measurements. J. Physical Chemistry, 57 
(December, 1953): 951-954. 

Matljevlc, E., R. S. Saplesyko, and J. B. Melville. Ferric Hydrous 
Oxide Sols: I. Mono-dispersed Basic Iron (III) Sulfate Particles. 
J. Colloid and Interface Science, 50, No. 3 (March, 1975): 567-
581. 

Mathews, B. A., and C. T. Rhodes. The Use of the Coulter Counter for 
Investigating the Coagulation of Mixed Monodisperse Particulate 
Systems. J. Coll. Sci., 28, No. 1 (1968): 71-81. 

Matsuo, T., H. Unno. Forces Acting on Floe and Strength of Floe. 
JEED, 107, No. EE3 (June, 1981): 527-545. 

McTlgue, N. and K. Berman. The Use of Particle Counters for 
Utilities. Presented at AWA Water Quality Technology 
Conference, 1988. 

McTlgue, N. and D. A. Comwell. The Use of Particle Counting for the 
Evaluation of Filter Performance. In AVWA Annual Conference 
Proceedings. AWA, Denver, 1988. 

McTlgue, N., H. Dunn, and K. Berman. Particle Counting and Sizing. 
In Coagulation Control. To be published AWA, Denver. 

Meakln, P. Computer Simulation of Growth and Aggregation Processes, 
pp. 111-135. In H. E. Stanley, and N. Ostrowsky, eds. On Growth 
and Form Fractal and Non-fractal Patterns in Phvslcs. Martinus 
Nljhoff, Netherlands, 1986a. 

Meakln, P. The Effects of Reorganization Processes on Two 
Dimensional Cluster-Cluster Aggregation. J. Colloid and 
Interface Science, 112, No. 1 (July, 1986b): 187-194. 

Meakln, P. Two Dimensional Simulation of Cluster-Cluster Aggregation 
and Deposition onto a Surface. J. Colloid and Interface Science, 
104, No. 1 (March, 1985): 282-284. 

Meakln, P. Computer Simulation of Cluster-Cluster Aggregation Using 
Linear Trajectories: Results from Three Dimensional Simulations 
and a Comparison with Aggregates Formed Using Brownian 



www.manaraa.com

389 

Trajectories. J. Colloid and Interface Science, 102, No. 2 
(December, 1984): 505-512. 

Heakln, P. Formation of Fractal Clusters and Networks by 
Irreversible Diffusion Limited Aggregation. Physical Review 
Letters, 51, No. 13 (September, 1983a): 1119-1122. 

Heakin, P. The Void-Sutherland and Eden Models of Cluster Formation. 
J. Colloid and Interface Science, 96, No. 2 (December, 1983b): 
415-424. 

Michaels, A. S., and J. C. Bolger. Plastic Flow Behavior of 
Flocculated Kaolin Suspensions. Ind. Eng. Chem. Fundam., 1, No. 
3 (August, 1962): 153-162. 

Miller, L. B. A Study of the Effects of Anions upon the Properties 
of Alum Floe. Public Health Reports, 40 (1925): 351-367. 

Mitchell, J. K. Fundamentals of Soil Behavior. John Wiley and Sons, 
New York, 1976. 

Moffett, J. W. The Chemistry of High Rate Water Treatment. JAWWA, 
60, No. 11 (November, 1968): 1255-1270. 

Morris, J. K. Temperature Effects on Turbidity Removal Using Metal 
Ion Coagulants. Master's Thesis. Virginia Polytechnic Institute 
and State University, Blacksburg, Virginia, 1983. 

Morris, J. K., and W. R. Knocke. Temperature Effects on the Use 
of Metal-ion Coagulants for Water Treatment. JAWWA, 76, No. 3 
(March, 1984): 74-79. 

Morrow, J. J., and E. G. Rausch. Colloid Destabilization with 
Cationic Polyelectrolytes as Affected by Velocity Gradients. 
JAWWA, 66, No. 11 (November, 1974): 646-653. 

Murphy, C. H. Handbook of Particle Sampling and Analysis Methods. 
Verlag Chemie International, Deerfield Beach, Florida, 1984. 

Needham, G. H. The Practical Use of the Microscope. Charles C. 
Thomas, Springfield, 111., 1958. 

Newman, A. C. D. The Interaction of Water with Clay Mineral 
Surfaces. Chapter 5. In A. C. D. Newman, ed. Chemlstrv of Clay 
and Clav Minerals: Mineralogical Society Monograph No. 6. 
Longman Scientific and Technical, Harlow, Essex, England, 1987. 

Nimtz, G. Magic Numbers of Water Molecules Bound Between Lipid 



www.manaraa.com

390 

Layers, pp. 259-256. In G. Grimvall, ed. Fhyslca Scrlpta, Vol 
T13, The General Conference of the Condensed Matter Division of 
the European Physical Society. Royal Swedish Academy of Science, 
Stockholm, Sweden, 1986. 

O'Mella, C. R. Coagulation in Waste Water Treatment. In K. J. Ives, 
ed. The Scientific Basis of Flocculatton. Nato Advanced Study 
Institute Series, Series E, Applied Science - No. 27. Sijthoff & 
Noorhoff, Netherlands, 1978. 

Okamoto, Y. M., H. Nishlkawa, and K. Hashimoto. Energy Dissipation 
Rate Distribution in Mixing Vessels and its Effect on Liquid-
Liquid Mass Transfer, Int. Chem. Eng., 21, No. 1 (January, 1981): 
88-94. 

Oldshue, J. Y. Fluid Mixing Technology. McGraw-Hill, New 
York, 1983. 

Oldshue, J. Y., and 0. B. Mady. Flocculator Impellers, a Comparison. 
C. E. P. (May, 1979): 72-75. 

Oldshue, J. Y., and 0. B. Mady. Flocculatlon Performance of Mixing 
Impellers. C. E. P. (August, 1978): 103-108. 

Olympus Corp. Olvmpus System Microscope Instruction Manual. Model 
BHS. Olympus Optical Co. LTD., Tokyo, 1985. 

Ottwelll, R. H. Properties of Concentrated Dispersions. In Th. F. 
Tadros, ed. Solid/Llauid Dispersions. Academic Press, New York, 
1987. 

Packham, R. F. Some Studies of the Coagulation of Dispersed Clays 
with Hydrolyzing Salts. J. Colloid Science, 20, No. 1 (January, 
1965): 81-92. 

Paladin, G., and A. Vulpiani. Fractals for Two and Three Dimensional 
Turbulence, pp. 255-258. In L. Pietronero, and E. Tosatti, eds. 
Fractals In Phvslcs. Elsevier Science, Netherlands, 1986. 

Pandya, J. D., and L. A. Spellman. Floe Breakage in Agitated 
Suspensions: Effect of Agitation Rate. Chem. Eng. Scl., 38, No. 
12 (1983): 1983-1992. 

Parthasarathy, N, and J. Buffle. Study of Polymeric Aluminum (III) 
Hydroxide Solutions for Application in Waster Water Treatment. 
Properties of the Polymer and Optimal Conditions of Preparation. 
Water Research, 19, No. 1 (1985): 25-36. 

Patwardham, S.V. and A. G. Mlrajgaonkar. Hydraulics of Flocculatlon 



www.manaraa.com

391 

and Paddle Characteristics. I. E. (I) J.-FH, 50 (February, 
1970): 60-64. 

Placek, J., L. L. Tavlarldes, and G. W. Smith. Turbulent Flow In 
Stirred Tanks, Part II: A Two Scale Model of Turbulence. A. I. 
CH. E. J., 32, No. 11 (November, 1986): 1771-1786. 

Placek, J., and L. L. Tavlarldes. Turbulent Flow In Stirred Tanks, 
Part I: Turbulent Flow In the Turbine Impeller Region. A. I. CH. 
E. J., 31, No. 7 (July, 1985): 1113-1120. 

Rabin, Y. Viscosity of Polyelectrolyte Solutions - the Generalized 
Fuose Law. J. Polymer Science: Part C: Polymer Letters, 26 
(1988): 397-399. 

Rabin; A. J., and H. Blocksldge. Coagulation of Montmorllllnlte 
Suspensions with Aluminum Sulfate. JAWWA, 60, No. 2 (February, 
1979): 102-108. 

Racz, Z. Scaling Generalization of the Smoluchowski Equation. 
pp. 263-266. In L. Pietronero, and E. Tosattl, eds. Fractals in 
Physics. Elsevier Science, Netherlands, 1986. 

Rahman) A., and F. H. Stillinger. Molecular Dynamics Study of Liquid 
Water. J. Chemical Physics, 55, No. 7 (October, 1971): 330-354, 
Reprinted In G. Ciccottl, D. Frenkel, and I. R. Mc Donald, eds. 
Simulations of Liquids and Solids. Molecular Dynamics and Monte 
Carlo Methods in Statistical Mechanics. North-Holland Publishing 
Company, Amsterdam, 1987. 

Rajagopalan, R., and J. S. Kim. Adsorption of Brownian Particles in 
the Presence of Potential Barriers: Effect of Different Modes of 
Double Layer Interaction. J. Colloid and Interface Science, 83, 
No. 2 (October, 1981): 428-449. 

Rao, M. A., and R. S. Brodkey. Continuous Flow Stirred Tank 
Turbulence Parameters in the Impeller Stream. Chemical 
Engineering Science, 27 (1972): 137-156. 

Reed, G. D., and P. C. Hery. Influence of Floe Size Distribution on 
Clarification. JAWWA, 78, No. 8 (August, 1986): 75-80. 

Reynolds, A. J. Turbulent Flows in Enpineerlnf. John Wiley and 
Sons, New York, 1974. 

Riddlck, T. M. Zeta Potential and its Application to Difficult 
Waters. JAWWA, 53, No. 8 (August, 1961): 1007-1030. 

Rigby, M., E. B. Smith, W. A. Wakeham, and G. C. Maltland. 



www.manaraa.com

392 

The Forces Between Molecules. Clarendon Press, Oxford, 1986. 

Ross, S., and I. D. Morrison. Colloidal Systems and Interfaces. 
John Wiley and Sons, New York, 1988. 

Rossauer, E. A. Instruments for Material Analysts. Iowa State 
University Press, Ames, 1981. 

Russel, W. B. The Dynamics of Colloidal Systems. University of 
Wisconsin Press, Madison, 1987. 

Saffman, P. G., Turner, J. S. On the Collision of Drops in Turbulent 
Clouds, J. Fluid Mechanics, 1 (January, 1956): 16-30. 

Saatci, A. M., and M. Halilsoy. Critique of Camp and Steins 
RMS Velocity Gradient. Discussion. JEED, 113, No. 3 (June, 
1987): 675-678. 

Schenkel, J. H., and J. A. Kitchener. A Test of DerJaguin-Verwey 
-Overbeck Theory with a Colloidal Suspension. Transactions 
Faraday Society, 56, No. 1 (1960): 161-173. 

Schowalter, W.R. The Effect of Bulk Motion on Coagulation Rates of 
Colloidal Dispersions. Advances in Colloid and Interface 
Science, 17 (1982): 129-147. 

Schertzer, D., and S. Lovejoy. Generalized Scale Invariance and 
Anisotropic Inhomogeneous Fractals in Turbulence. In L. 
Pietronero, and E. Tosatti, eds. Fractals In Phvslcs. Elsevier 
Science, Netherlands, 1986. 

Skyluk, W. P., and F. S. Stow Jr. Aging and Loss of Flocculatlon 
Activity of Aqueous Polyacrylamide Solution. J. Applied Polymer 
Science, 13 (1969): 1023-1036. 

Slayter, E. Optical Methods In Biology. Wiley-Interscience, 
New York, 1970. 

Snodgrass, W. J., M. M. Clark, and C. R. O'Melia. Particle Formation 
and Growth in Dilute Aluminum(III) Solutions: Characterization of 
Particle Size Distributions at a pH of 5.5. Water Research, 18, 
No. 4 (1984): 479-488. 

Sonntag, R. C., and W. B. Russel. Structure and Breakup of Floes 
Subjected to Fluid Stress. J. Colloid and Interface Science, 
113, No. 2 (October, 1986): 399-413. 

Spellman, L. A. Hydrodynamic Aspects of Flocculatlon. pp. 63-88. 



www.manaraa.com

393 

In K. J. Ives, ed. The Scientific Baals of Flocculatlon. 
Sljthoff & Noordhoff, Netherlands, 1978. 

Srlcharoenchalklt, P., and R. D. Letterman. Effect of Al(III) and 
Sulfate Ion on Flocculatlon Kinetics. JEED, 113, No. 5 (October, 
1987): 1120-1138. 

Srlvastava, R. M. Impact of Rapid Mixing and Temperature on 
Flocculatlon of Clay Suspensions In Water. Master's Thesis. 
Iowa State University, Ames, Iowa, 1988. 

Stockham, J. D. What is Particle Size: The Relationship Among 
Statistical Diameters. In Stockham and Fochtman, ed. Particle 
Size Analysis. Ann Arbor Science Publishers, Ann Arbor, Mich. 
1977. 

Stumm, W., and C. R. O'Helia. Stoichlonetry of Coagulation. JAWWA, 
60, No. 5 (May, 1968): 514-539. 

Stumm, W., and J. J. Morgan. Chemical Aspects of Coagulation, JAWWA, 
56, No. 8 (August, 1962): 971-994. 

Stumm, W., and J. J. Morgan. Aouatlc Chemistry. 2nd edition. John 
Wiley and Sons, New York, 1981. 

Stump, V. L., and J. T. Novak. Mixing of Polyelectrolytes for Direct 
Filtration, pp. 14A-2. In AWWA Annual Conference Proceedings, 
Part 1 of 2, Anaheim, Ca. AWWA, Denver, 1976. 

Sullivan Jr., J. H., and J. E. Singley. Reactions of Metal Ions 
in Dilute Aqueous Solution: Hydrolysis of Aluminum. JAWWA, 60, 
No. 11 (November, 1968): 1280-1287. 

Swift, D. L., and S. K. Frledlander. The Coagulation of Hydrosols by 
Brownlan Motion and Laminar Shear Flow. J. Colloid Science, 19 
(1964): 621-647. 

Tambo, N., and H. Hozumi. Physical Characteristics of Floes -
II. Strength of Floe. Water Research, 13 (1979): 421-427. 

Tambo, N., and Y. Watanabe. Physical Characteristics of Floes -
I. The Floe Density Function and Aluminum Floe. Water Research, 
13 (1979a): 409-419. 

Tambo, N., and Y. Watanabe. Physical Aspect of Flocculatlon 
Process-I. Fundamental Treatise. Water Research, 13 (1979b); 
429-439. 

Teklppe, R. J., and R. K. Ham. Apparatus to Examine Floe Forming 



www.manaraa.com

394 

Processes. JAWWA, 62, No. 4 (April, 1970): 260-268. 

Tennekes, H., J. L. Lunley. A First Course In Turbulence. MIT 
Press, Cambridge, Mass., 1972. 

Thomas, D. G. Turbulent Disruption of Floes in Small Particle Size 
Suspensions. A. I. Ch. E. J., 10, No. 4 (July, 1964): 517-523. 

Thomas, I. L., and K. H. Mc Corkel. Theory of Orientational 
Flocculation. J. Colloid and Interface Science, 36, No. 1 (May, 
1971): 110-118. 

Tomi, D. T., and D. F. Bagster. The Behavior of Aggregates 
in Stirred Vessels: Part I - Theoretical Considerations on the 
Effects of Agitation. Transactions Institution of Chemical 
Engineers, 56, No. 1 (1977): 1-8. 

Trace Inorganic Substances Committee. A Review of Solid-Solution 
Interactions and Implications for the Control of Trace Inorganic 
Materials in Water Treatment. JAWWA, 80, No. 10 (October, 1988): 
56-64. 

Treweek, G. P. Optimization of Flocculation Time Prior to Direct 
Filtration. JAWWA, 71, No. 2 (February, 1979): 96-101. 

Treweek, G. P., and J. J. Morgan. Prediction of Suspension 
Turbidities from Aggregate Size Distribution. Chapter 15. In 
Kavanaugh, and Leckie, eds. Particulates in Water. American 
Chemical Society Publishers, Washington, D. C., 1980 

Treweek, G. P., and J. J. Morgan. Size Distribution of Flocculated 
Particles: Application of Electric Particle Counters. 
Environmental Science & Technology, 11, No. 7 (July, 1977): 707-
714. 

Turski, L. A. Possible Freezing Scenarios for Classical Liquids. 
pp. 259-256. In G. Grimvall, ed. Physica Scripta, Vol T13, The 
General Conference of the Condensed Matter Division of the 
European Physical Society. Royal Swedish Academy of Science, 
Stockholm, Sweden, 1986. 

van Olphen, H. An Introduction to Clav Colloid Chemistry. 
2nd edition. John Wiley and Sons, New York, 1977. 

van Olphen, H. Dispersion and Flocculation. pp. 203-208. 
In A. C. D. Newman, ed. Chemistry of Clav and Clav Minerals: 
Mineralogical Society Monograph No. 6. Longman Scientific and 
Technical, Harlow, Essex, England, 1987. 



www.manaraa.com

395 

van den Ven, T. G. H., and S. G. Mason. The Hlcrorheology of 
Colloidal Dispersions VII. Grthoklnetlc Doublet Formation of 
Spheres. Colloid and Polymer Science, 255, No. 5 (1977): 468-
479. 

Van't Relt, K., W. Brljn, and J. H. Smith. Real and 
Fseudo-turbulence In the Discharge Stream from a Rushton Turbine. 
Chemical Engineering Science, 31 (1976): 407-412. 

Van't Relt, K., and J. H. Smith. The Trailing Vortex System Produced 
by Rushton Turbine Agitators. Chemical Engineering Science, 30 
(1975): 1093-1105. 

Velz, C. J., Influence of Temperature on Coagulation. Civil 
Engineering, 4, No. 7 (July, 1934): 345-349. 

Voke, P. E., H. W. Collins. Large Eddy Simulation: Retrospect and 
Prospect. Physico Chemical Hydrodynamics, 4, No. 2 (1983): 119-
161. 

Weber, W. J., and U. Stumm. Mechanisms of Hydrogen Ion Buffering 
in Natural Waters. JAWWÂ, 55, No. 12 (December, 1963): 1553-
1578. 

Wetzel, R. G. Lironolopv. W. B. Saunders Company, Philadelphia, 
Penn., 1975. 

Yamate, G., and J. D. Stockham. Sizing Particles Using the 
Microscope. Chapter 3. In Stockham and Fochtman, Particle Size 
Analysis. Ann Arbor Science Publishers, Ann Arbor, Mich. 1977. 

Yao, K. M., M. T. Habian, and C. O'Mella. Water and Wastewater 
Filtration: Concepts and Applications. Environmental Science & 
Technology, 5 (1971): 1105-1112. 

Yeh, H., and M. M. Ghosh. Selecting Polymers for Direct Filtration. 
JAWWA, 73, No. 4 (April, 1981): 211-218. 

Zabrusky, N. J. Grappling with Complexity. Physics Today, 40, 
No. 10 (October, 1987): 25-27. 

Zeta-Meter, Inc. Promotional Literature. 1720 First Ave, New York, 
New York, 10028, 1986. 



www.manaraa.com

396 

APPENDIX A 

This Is a summary of the operating commands needed to use the 

automatic Image analyzer(AIA) In direct Imaging.from the light 

microscope. The software for this instrument is continually being 

updated and changed. Therefore, this can not be considered a 

cookbook. It will, however, give the reader a starting point from 

which the reader may begin to explore the AIA system. 
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This Is a summary of the operating commands needed to use the 
automatic Image analyzer(AIA) In direct Imaging from the light 
microscope. This document will be divided Into the following 
subsets: 

o Starting the software with the machine turned on 
o collecting the Image 
o setting the color levels 
o analyzing the Image 
o exporting Information to the IBM XT 
o exiting from the system 
o Starting the software with the machine shutoff, or hung 

Each of these topics will be dealt with separately. 

1. Hot Start 

If the screen Is dark press the return key; <CR>. This will 
reactivate the monitor screen If the main computer has shut It down. 

If the screen prompt Is on the screen {this means the RT-11 
operating system Is running), then type "LEHSET" <CR>, to Initiate 
the operation of the OASYS software. If the aforementioned prompt Is 
not on the screen you can either type menu, and see if the menu comes 
up, or you can follow directions and type "LEHSET". As a last resort 
you can always go to the cold start-up procedure. 

]Log the starting time into the Lemont logbook. 

'Che screen prompt will ask which system you want to work with; 
respond 
"OA" <CR> to perform Image analysis. 

Enter the password. The password appears on the screen Immediately 
above the prompt where the password is to be entered. The first menu 
(Lemont Public Program OASYS and X-ray) will now appear. You need to 
perform two tasks in this menu, these are: 

o initialize the hardware ("31" <CR>) 
o enter image analysis mode ("1" <CR>) 

Initializing the Hardware 

Initializing the hardware insures that any bizarre instrument 
settings left by the previous user will be removed. This is 
Important, and the problem is real. Don't skip this step, it 
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literally takes 2 seconds, and may save you from a severe headache. 
Type "31" <CR>. 

Entering Image Analysis 

This puts you In the specific part of the program which will allow 
you to collect an image from the light microscope. 

Now to enter the Image analysis node type "1" <CR>. 

The screen prompt at the top of the screen is asking for a file known 
as the answer file. This file takes care of a large number of house 
keeping chores. If you simply hit return the default file 
(1NP:0ASYS.ANS) will be put in place. 

You are now in the second menu (Lemont OASYS Menu). You will see 
this menu periodically during the acquisition and analysis of an 
image. Enter "1" <CR> to acquire an image, or calibrate a lens 
combination. 

II. Collect an Image 

The third menu (Image Selection Commands) will now have appeared, and 
you will need to do two things on this menu. These are: 

o calibrate the system optics ("C" <CR>) 
6 collect an optical image for analysis. ("0" <CR>) 

Calibrating the System Optics 

If you are using the BH-2S up-right Olympus scope with Nomarskl 
optics, and are willing to trust someone else's calibration numbers, 
there are values presented later in this document. If you are on a 
different light scope or don't trust the numbers presented here, 
place a stage micrometer on the microscope stage and proceed. 

The first step in the calibration is to collect an image of the stage 
micrometer, for instructions on doing this see the next section 
"Collecting an Optical Image". 

Type "C" <CR> this will put you in the subroutine for checking the 
systems total magnification using a stage micrometer. 

Note:Check the video monitor switch, it must be set to "RGB" in order 
to perform calibration. 
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Using the arrow keys move the "+" to the starting point on the stage 
micrometer Image which appears on the video monitor screen and <CR>, 
then move the "+" to the ending point and <CR>. The step size used 
In moving the "+" can be adjusted by entering 0-5, 0 yields the 
finest step. Setting the step size at 0, allows you to get the 
exactly on the point of Interest. The screen prompt will then ask 
you for the actual length measured on the stage micrometer. Once you 
have entered the actual length measured, the monitor will report the 
magnification. Write this down you will need It later. The 
calibration operation can be carried out a number of times and the 
results averaged. 

When you are done with the calibration, type "N" to return to the 
previous menu. You are now ready to collect an image. 

Collecting an Optical Image 

The first step In collecting the Image Is to place the specimen on 
the microscope stage and focus the scope. If the video monitor Is 
off turn It on. There Is a panel on the bottom front of the monitor. 
Open the panel and press the Line 'A' button, this puts the live 
Image on the video monitor screen. 

Now with the hardware and the specimen setup, type "0" <CR>. You 
have selected optical imaging, this allows one to use the light 
microscope as the primary sensor for the AlA system. At this point 
you should have a live Image visible on the video monitor. If not 
there are a number of things which can be checked: 

o is the trl-nocular head on the scope sending light to the 
camera? 

o is the light level on the scope to high or low? It is 
actually more common for the light level to be to high and 
be overloading the camera then for it to be to low. Turn 
the light all of the way down and let the thing sit for 30 
sec., then adjust up from there slowly. 

o Take the little black box, set it on manual and adjust with 
the contrast and brightness. 

o Go get Glen Oren ( This is a last resort. Glen feeds people 
to the hard drive who do this first instead of last). 

Note:It is important that the image on the video monitor be in crisp 
focus, it is not necessary that the image seen through the eyepieces 
be crisp, so focus the image while looking at the screen. 

The screen prompt will ask how many times the image should be 
averaged. You can fiddle with the live image to your hearts content, 
until you answer this prompt. Once you answer this prompt the live 
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Image will be gone and you will actually be looking at the digitized 
image. A response of 1 - 3 is reasonable. Example: "2" <CR> 

Note: If you don't know the magnification of the lens combination and 
camera which you are using you must go to "Calibration" and find out 
before you collect an image. 

Once you have collected the image type "x"<CR> to return to the 
previous menu for color selection and image analysis. 

III. getting thff iMg? Ç9l9r Lmlg 

In this section we adjust the digitized image so the Computer is 
analyzing the features which are of interest to us. This is done by 
defining specific shades of gray or contrast levels on the Image 
(grey levels) as discrete bands. The computer will then analyze the 
features within a defined band as features of interest. A specific 
band is assigned a color so that humans can also see what is going 
on, since we are not as sensitive to gray levels as the computer. 
There are files stored which contain approximate gray level 
assignments, these files need to be Imported and fine tuned for the 
specific sample on the scope. 
This is done in Menu option 2 - Set Levels For Analysis 

Note: Switch the monitor from Line "A" to the "RGB" setting using the 
push-buttons in the front panel on the video monitor. 

Type "2" <CR>. 

At this point the screen prompt will ask for a color file name. This 
file defines the color levels of Interest in this particular 
analysis. For Instance for the analysis of flocculated clay the 
color file "clay" is used. 

Once the file has been selected you optimize the file, using option 
"C" <CR> and the arrow keys. To check how accurately the color bar 
represents the actual Image of interest, alternate between "V <CB> 
and "T" <CR>. This switches back and forth between the original 
image and the colored image. Once the color bar looks good type "x" 
<CR>. At this point you will be asked if you want to name and save 
the modified file. In general you don't save every file. 

To leave this portion of the program type "v," (Note: Do not type <CR> 
this time) and you will return to the previous menu. 

IV. Analyzing the Image 
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Now we are ready to analyze the Image using menu option 3 -"Analyze 
Frame" 

Occasionally at this point you will get a screen prompt which says 
"Need Thresholds". When this screen prompt shows up enter, the color 
file name. If you don't enter the color file name, the computer gets 
really ugly. 

Example : "clay" <CR> 

The screen prompt will ask if you would like to "Change Block Data 
Constants". This is where size discriminators can be entered. 

"0" <CR> will give you no change in the constants 

If you want to change any of the constants type in the 
number of the option which you want to change (1 - 13), 
then enter the new value (see LEMONT manual). 

The screen prompt ask if you want to locate particles with a JOY BOX, 
type "-1" <CB> for yes. 

At the next screen prompt enter "0" <CR> to analyze composite 
structures(i.e.. Whole floe). 

This screen prompt asks for the Magnification. This is the 
magnification which was determined in the calibration routine. If 
you are using the Olympus BH-2S with Nomarski, you can use the 
following magnification values. 

NFK Lens - 2.5x 
Objective Magnification Field of View (Video 
Monitor^fum) 
10 79.61X 1260.93 
20 159.53x 626.86 
40 317.71x 314.75 

NFK Lens - 5% 
Obl9Gt&V9 Magnification Field of View (Video 

10 158.85% 629.51 
20 320.31x 312.20 
40 635.42% 157.38 
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NFK Lens - 15% 

MçnlmKvm) 
Magnifisation Field of View (Video 

10 
20 
40 

239.26% 
474.61% 
953.125% 

417.96 
210.70 
104.918 

This screen prompt asks if you want Information printed out on each 
particle encountered. Unless you have a very good reason for doing 
otherwise, always type in "0" <CR>, for no. Any other response will 
generate Just a TON of worthless paper. 

The screen prompt "specify a guard ring" sets a guard ring around the 
JOY BOX. This is a little weird, because we still have not assigned 
the Joy box, it will be defined down two paragraphs. This guard ring 
prevents particles which are mostly outside of the Joy bo% from being 
measured as smaller particles within the box. The guard ring is a 
band around the Joy bo%. If the center of a particle is outside of 
the Joy bo% the particle is not included in the analysis. A 
suggested value to be entered here is appro%. one-half the size of 
the larger particles expected in the sample (i.e., if the particles 
will be 20 um set the guard ring at 10 um). This is so the guard 
ring is wide enough to allow the computer to discriminate against 
large particles which are mostly outside the Joy box. 

The screen prompt is now asking you to designate a file name. This 
is a temporary file where the data being generated will be stored for 
the LEHONT to manipulate It. This is the same file you may want to 
export later so give it a reasonable name, and write it down on the 
submittal forms provided for this purpose. If the file is not logged 
on the appropriate submittal form, MARL personnel may destroy the 
file in routine house cleaning. A typical file name would be 
DL2:RH7987. This is a file which Is on device DL2 (a virtual disc on 
the hard drive). The name tells us that it was a rapid mixed sample 
from the test run on 7/9/1987. 

This screen prompt is simply a sample ID of 50 characters or less, 
use your imagination. 

This section Is to set the JOY BOX around the particles to be 
analyzed. The joy box restricts the area which the AIA will analyze. 
If the guard ring is used but the Joy box is not, the AIA will 
analyze the entire frame, and will reject the particles whose centers 
are outside the guard ring. If the Joy box is used the AIA will only 
analyze the area within the Joy box plus the guard ring, which is a 
specified distance outside the Joy box, and then will reject any 
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particles whose centers are not Inside of the Joy box. In situations 
where the entire frame is not of interest, the joy box saves a great 
deal of analysis time. 

Typing "H" or "V" will tell the computer that you are adjusting the 
horizontal or vertical dimension of the box. Then "+" or will 
expand or reduce the respective dimensions. The arrow keys are used 
to position the box on the screen. The step size used in adjusting 
and moving the Joy box can be adjusted by entering 0-5, 0 yields the 
finest step. Once the location and size of the Joy box are 
satisfactory type "x" {Note: Typing <CR> here is fatal DO NOT <CR> 
HERE if you do it is stored in the keyboard buffer and a 0 is entered 
at the next screen prompt. The result is that you can only enter one 
frame/file.) Once you have typed "x" the analysis of the frame will 
begin immediately. 

After the analysis of the frame is complete, the screen prompt will 
indicate the number of this frame in the analysis and the number of 
features which were encountered in this analysis. It will then give 
the following options: 

0 - No more frames 
1 - New frame 
2 - Print intermediate results 
R - Return to restart options 

"0"<CR> tell the computer that this is the last information to be 
placed in the present file, the file will be closed after the final 
results are printed. The screen prompt will now ask if you want plot 
options this is pretty much self explanatory. The monitor will 
display the following menu: 

plot options 
-1 finished 
1 more plots 

If you don't ask for more plots ("1" <CR>), you won't get any plots 
at all. 
If you type "-1" CR the screen prompt will ask some non-fatal 
questions and then you will go back to menu 3 and you can collect 
another image or exit the program. 

"1" <CR> keeps the current data file open, and sends you right back 
to menu 3, where you can either collect another image(the usual thing 
to do), or you can modify the Joy box on the current image and 
analyze a new field on the current image. 
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"2" <CS> will print the results for Just this frame. This is usually 
not done. However, if it is, the basic results will be printed as 
described above. The monitor will display the following menu: 

plot options 
-1 finished 
1 more plots 

Remember, if you don't ask for more plots ("1" <CR>}, you won't get 
any plots at all. 

If you tell it you are finished, by typing "-1" <CR>, the screen 
prompt will ask if you want more frames. If you type "1" <CB>, you 
will be taken back two menus. This is Just fine. If you want to 
analyze more frames on the current image type "3" <CR>, and you will 
find yourself back on the current image and able to move the Joy box 
to another place on the image. If you want to collect a new image 
but continue to add the information to the same file type "1" <CR>, 
and go collect a new image. 

If you type "R" <CR>, you again close the current file and open a new 
file. This means, if you wanted to merge the information together, 
you will have to do it manually, based on the areas analyzed in the 
two files. However, if you were done with that specimen, either this 
or 0 is the appropriate option, since it allows you to start the next 
sample fresh. 

V. Collecting Output and Exporting Files to the IBM XT 

Collect your paper output from the printer. Use onlv the formfeed 
button to advance the paper! 

VI. Exiting From the System 

If at any time you want to exit from the Lemont system, type Control 
"C" twice. The first Control "C" gets you back to the main menu. The 
second Control "C", gets you back to the operating system. 

Turn off the video monitor. 

When ever you are exiting a session remember to "LOGOFF" from the 
session, and to enter the exiting time in the Lemont logbook. 

Remember to clean up the light microscope after each session. This 
Includes : 
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o place the light intensity on 0 and then shut off the 
light 

o remove the video camera($8,000.00) from the scope 
and reinstall it on the macro-table, if you won't be 
using it for a while (Don't drop iti) 

o remove any specimens from the scope and clean the cell 
o cover and/or put away all optics, this includes; 

- cover the scope($10,000.00) 
- put away the NFK lenses properly($135.00) 
- put away the video camera adapter($175.00) 

In general, clean up your mess, you are a guest here I 

VII. çpld Stftgt 

If the system is turned off, check that the following equipment is 
on: 

- those normally on 
o main power switch for the computer system 
o computer panel power switch 
o operators console 
o digitizer tablet (ie. plug it in if you need it) 

- those probably on 
6 video camera 
o film recorder 

- those probably off 
o video color monitor 
o microscope light source 

When the DEC computer is turned on, but the operating system is not 
available press the "Run" button on the DEC. If the monitor is dark 
but the computer is on, press return on the terminal keyboard, the 
DEC shuts off the monitor if the keyboard sits idle for any extended 
period. Upon start-up the system will request information on the 
date and time, the information should take the following form: 

o 20-JUL-87 
o 16:00:00 

This will get the operating system to a point where the hot start 
procedure can be followed. 

Playback Analysis Summary 
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This document assumes that the flies to be played back are on 8 Inch 
floppies, and that the user desires to transfer the output to 5 1/4 
Inch floppies on the IBM XT. 

The first step Is to set the DEC up so that It sends everything to 
the IBM Instead of to the line printer. 

Type .Assign AH LP 

(NOTE: If you want to display results to the screen Instead of 
sending them to the line printer or the IBM you can use an .ASSIGN IT 
LP) 

Then be sure that Cable AH goes to Cable A at the LEHONT, and Cable 
IBM goes to Cable A at the IBM. 

Boot the IBM, and, once the SHELL comes up, type K <CR> to get into 
kermit. 
At this point go to the LEHONT and get it set up. This is AIA below. 

The next series of steps are repeated for each file that is analyzed 
and transferred from the AIA. 

MS> LOG File.Name (e.g., A:FL0C5MIN.PRN) 
HS> CONNECT <CR>{The IBM is now set up to log any thing which comes 

to it from the DEC into a file on the 5 1/4 inch 
disc. It will continue to do this until it is told to 
quit.) 

MS>C0NTR0L ] C (This will tell the IBM to quit logging to the open 
file.) 

MS>CLOSE <CR> (This will close the file which was opened.) 

These four steps can be repeated as often as desired. When you 
desire to leave kermit simply type; 

MS>EXIT 

Don't forget to reassign the line printer before you leave the DEC; 

.ASSIGN LS LP 

AIA 

Type LEMSET to enter the Lemont programs. 
Type 11 <CR> for OASYS Playback. 
Type <CR> for the default answer file. 
Type N <CR> 
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The block data change prompt is now on the screen. This is the point 
at which discriminators can be set, and histogram classes are 
changed. 

To set histogram classes: 

Type 13 <CR> to enter misc. prog, variables. 
Ill FFFFFFFFFF (The screen will display this line) 
2 31.1 <CR> (Type this line to set an upper limit of 

31.1 
histogram class intervals.} 

Type 0 <CR> to exit misc. variables. 
Type 1 <CR> to set histogram class coordinates. 
Type 2 <CB> to select a log scale; 

Y-Beg FFFFFFFFFFFFF Y-End FFFFFFFFFFFF (The screen will display 
this.} 

0.5 20,000 <CR> (Type this in 
response) 

Type 30 <CR> 

This sets up a log scale histogram with 30 classes beginning at 0.5 
ftor (Diameter - 0.79 pm) and ending at 20,000 itar (Diameter - 160 
po). 

Type 0 <CB> 

General Notes to Self: 

Double control C gets us back to the system 
Up to 30 size categories can set up, and these can be distributed in 
the areas of interest. 
SHO will get a list of how different pieces of physical and logical 
hardware are assigned. 
DIR: will get the directory. 



www.manaraa.com

408 

APPENDIX B 

This appendix contains the data used to create the graphs presented 
In the body of the text. The reader Is reminded that the 
experimental conditions are detailed in Table 25. Specific 
Informtion on such things as G-values coorespondlng to a specific 
rpm can be found on that table. Neither the data from HIAC particle 
counter nor the data from the breakup experiments is included in this 
table. A number of the experiments which have been included have not 
been discussed in the results section. 
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FLOCCUIATION EXPERIMENT MATRIX 
TURBINE GEOMETRY 

RM C0A6. FLOG. PARAMETERS HELD CONSTANT 
RUN RM TIME TYPE MIXING TEMP. 
DATE RPM (MIN) ENERGY •c pH pOH e tl G 

5/2/88 500 2.25 POLYMER HI 20 1 1 1 1 
4/14/88 500 2.25 POLYMER HI 5 1 

4/26/88 250 1 POLYMER LO 20 1 1 1 1 
4/28/88 250 1 POLTfMER HI 20 1 1 1 1 
3/3/88 250 1 POLYMER LO 5 1 
3/1/88 250 1 POLYMER LO 5 1 
2/23/88 250 1 POLYMER HI 5 1 
2/25/88 250 1 POLYMER HI 5 

5/4/88 500 1 ALUM HI 20 1 1 1 1 
3/17/88 500 1 ALUM LO 5 1 
3/29/88 500 1 ALUM LO 5 
4/12/88 500 1 ALUM HI 5 1 
4/7/88 500 3 ALUM LO 5 1 
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FLOCCULATION EXPERIMENT MATRIX 
TURBINE GEOMETRY 

RM COAG. FLOG. PARAMETERS HELD CONSTANT 

RUN RM TIME TYPE MIXING TEMP. 
DATE RPM (MIN) ENERGY *C pH pOH € fj G 

4/21/88 250 5 ALUM LO 20 

4/19/88 250 5 ALUM LO 20 

2/1/88 250 5 ALUM LO 5 

2/5/88 250 5 ALUM LO 5 

2/9/88 250 5 ALUM HI 5 

10/22/87 250 1 ALUM LO 20 

11/3/87 250 1 ALUM LO 20 

10/24/87 250 1 ALUM LO 20 

11/5/87 250 1 ALUM HI 20 

11/10/87 250 1 ALUM HI 20 

11/12/87 250 1 ALUM HI 20 

11/19/87 250 1 ALUM LO 5 

12/1/87 250 1 ALUM LO 5 

1/14/88 250 1 ALUM HI 5 

1/19/88 250 1 ALUM HI 5 

1 
1 

1 
1 

1 
1 
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FLOCCULATION EXPERIMENT MATRIX 
TURBINE GEOMETRY 

RM COAG. FLOG. PARAMETERS HELD CONSTANT 
RUN RM TIME TYPE MIXING TEMP. 
DATE RPM (MIN) ENERGY *C pH pOH £ 9 G 

12/15/87 250 1 ALUM LO 5 1 
12/8/87 250 1 ALUM LO 5 1 1 
12/31/87 340 1 ALUM LO 5 1 2 
12/22/87 250 1 ALUM LO 5 1 1 
12/19/87 250 1 ALUM LO 5 1 1 

1/21/88 250 1 ALUM HI 5 1 1 
1/2/88 250 1 ALUM HI 5 1 1 
1/5/88 250 1 ALUM HI 5 1 1 
1/7/88 250 1 ALUM HI 5 1 
1/26/88 250 1 ALUM HI 5 1 1 
1/28/88 250 1 ALUM HI 5 1 1 

2/11/88 250 1 ALUM HI 2 1 1 

A 2 IN COLUMN "N" INDICATES THAT THE KOLMOGOROV MICROSCALE WAS HELD 
CONSTANT DURING BOTH RAPID MIXING AND SLOW MIXING. 
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FLOCCUIATION EXPERIMENT MATRIX 
STAKE & STATOR GEOMETRY 

RM COAG. FLOG. PARAMETERS HELD CONSTANT 
RUN RM TIME TYPE MIXING TEMP. 
DATE RPM (MIN) ENERGY •G pH pOH e f, G 

6/23/88 250 1 ALUM LQ 20 1 1 1 1 
8/9/88 250 1 ALUM LO 20 1 1 1 1 
6/21/88 250 1 ALUM HI 20 1 1 1 1 
7/28/88 250 1 ALUM HI 20 1 1 1 1 
6/27/88 250 1 ALUM LO 5 1 
8/15/88 250 1 ALUM LO 5 1 
6/29/88 250 1 ALUM HI 5 1 
8/17/88 250 1 ALUM HI 5 1 

FLOCCULATION EXPERIMENT MATRIX 
TURBINE GEOMETRY 

RM COAG. FLOC. PARAMETERS HELD CONSTANT 
RUN RM TIME TYPE MIXING TEMP. 
DATE RPM (MIN) ENERGY •c pH pOH e n G 

9/16/88 250 1 FERRIC HI 20 1 1 1 1 
9/12/88 250 1 FERRIC HI 20 1 1 (Sweep) 
9/20/88 250 1 FERRIC HI 5 1 
9/30/88 250 1 FERRIC HI 5 1 
9/23/88 250 1 FERRIC HI 5 1 
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The data presented on this page is representative of the data which 

accompanied each AIA analysis. 

Mar. 3, 1988 DARKFIELD, Objective Mag. - 20X; 
System Mag. - 474.61X 

area cell cell sample 
anal name depth volume 

(sq cm) (mm) (mm*3) 

0.00289 hom N 0.680 0.1965 
0.00289 rmix B 0.685 0.1980 
0.00289 1 min C 0.831 0.2402 
0.00289 3 min D 0.696 0.2011 
0.00289 5 min E 0.775 0.2240 
0.00289 10 min F 0.706 0.2040 
0.00289 15 min G 0.642 0.1855 
0.00289 20 min X 0.645 0.1864 
0.00321 25 min H 0.694 0.2228 
0.00449 30 min 0 0.681 0.3058 
0.00449 45 min A 0.758 0.3^03 

The first column above represents the total area of the sample cell 

which has been analyzed by the AIA. The second column is the sample 

name. The third column is the sample cell identification. The fourth 

column is the average depth of the sample cell. The last column is 

the total sample volume which has been measured. This is calculated 

based on the area in column 1 and the and the cell depth in column 4. 

The numbers in the following pages are number concentratlon/mL, in the 

original sample, of particles in each size class. This number 

concentration is based on the calculated volume, as shown in column 

five above. As explained previously, the experimental conditions for 

the various experiments are given in Table 26 of the text and the 

table at the begining of this appendix. Using the two tables and this 

data, it should be possible to completely reconstruct how the 

experiments were performed and the results of the experiments. 
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05/02/88 
Time > 
homog 
2.25 

0 min 
0 

1 min 
1 

3 min 
3 

5 min 10 min 
5 10 

dia 

0.87 8.08E+05 3.28E+05 2.74E+05 3.76E+05 2.49E+05 2.47E+05 
1.04 5.78E+05 2.93E+05 2.32E+05 3.09E+05 2.69E+05 2.65E+05 
1.24 7.55E+05 3.69E+05 3.11E+05 3.98E+05 3.58E+05 3.44E+05 
1.48 l.lOE+06 5.56E+05 3.79E+05 3.85E+05 4.26E+05 3.66E+05 
1.77 8.08E+05 5.10E+05 3.41E+05 4.88E+05 3.70E+05 3.09E+05 
2.11 7.4SE+05 4.39E+05 2.8iE+05 3.94E+05 3.14E+05 2.78E+05 
2.51 6.17E+05 3.59E+05 2.44E+05 2.95E+05 2.05E+05 2.21E+05 
3.00 3.55E+05 2.63E+05 1.39E+05 2.01E+05 2.01E+05 1.68E+05 
3.58 1.18E+05 1.77E+05 l.OlE+05 1.34E+05 1.09E+05 9.71E+04 
4.27 6.57E+04 1.52E+05 l.OlE+05 9.85E+04 5.63E+04 5.74E+04 
5.10 2.63E+04 8.59E+04 4.12E+04 8.06E+04 5.63E+04 3.97E+04 
6.08 1.97E+04 7.58E+04 5.62E+04 2.24E+04 2.81E+04 3.09E+04 
7.26 1.31E+04 3.03E+04 7.50E+03 1.79E+04 2.01E+04 1.32E+04 
8.66 O.OOE+OO 1.52E+04 2.25E+04 2.69E+04 2.81E+04 1.32E+04 
10.33 O.OOE+OO O.OOE+OO 7.50E+03 4.48E+03 4.02E+03 2.65E+04 
12.33 O.OOE+OO O.OOE+OO 7.50E+03 8.95E+03 4.02E+03 8.83E+03 
14.71 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 4.02E+03 8.83E+03 
17.55 O.OOE+OO O.OOE+OO O.OOE+OO 4.48E+03 4.02E+03 4.41E+03 
20.94 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 4.02E+03 4.41E+03 
24.98 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
29.81 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
35.56 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
42.43 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 4.41E+03 
50.63 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
86.00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
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15 min 20 min 
15 20 

dla. 

0.87 1.94E+05 2.54E+05 
1.04 2.47E+05 2.17E+05 
1.24 2.77E+05 2.46E+05 
1.48 3.49E+05 3.30E+05 
1.77 3.25E+05 2.74E+05 
2.11 2.23E+05 2.34E+05 
2.51 1.70E+05 1.65E+05 
3.00 1.31E+05 1.09E+05 
3.58 7.28E+04 5.64E+04 
4.27 6.31E+04 3.22E+04 
5,10 1.94E+04 3.62E+04 
6.08 1.94E+04 1.21E+04 
7.26 1.46E+04 1.61E+04 
8.66 4.85E+03 8.05E+03 
10.33 9.70E+03 4.03E+03 
12.33 O.OOE+OO O.OOE+OO 
14.71 9.70E+03 O.OOE+OO 
17.55 1.46E+04 4.03E+03 
20.94 4.85E+03 4.03E+03 
24.98 4.85E+03 O.OOE+OO 
29.81 4.85E+03 8.05E+03 
35.56 O.OOE+OO O.OOE+OO 
42.43 4.85E+03 O.OOE+OO 
50.63 O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO 4.03E+03 
72.08 O.OOE+OO O.OOE+OO 
86.00 O.OOE+OO 4.03E+03 
102.62 O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO 

25 min 30 min 45 min 
25 30 45 

1.44E+05 1.96E+05 9.75E+04 
1.35E+05 l.llE+05 9.53E+04 
1.73E+05 1.34E+05 9.75E+04 
2.25E+05 2.19E+05 1.65E+05 
2.12E+05 1.83E+05 1.49E+05 
1.09E+05 1.37E+05 1.13E+05 
1.06E+05 6.21E+04 8.02E+04 
5.13E+04 8.83E+04 4.55E+04 
3.21E+04 3.92E+04 1.30E+04 
1.60E+04 2.94E+04 1.30E+04 
2.57E+04 1.31E+04 1.08E+04 
2.25E+04 9.81E+03 8.67E+03 
6.42E+03 3.27E+03 2.17E+03 
9.63E+03 3.27E+03 2.17E+03 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO 2.17E+03 
O.OOE+OO O.OOE+OO O.OOE+OO 
3.21E+03 3.27E+03 O.OOE+OO 
3.21E+03 3.27E+03 O.OOE+OO 
O.OOE+OO 3.27E+03 O.OOE+OO 
O.OOE+OO 3.27E+03 O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
3.21E+03 O.OOE+OO O.OOE+OO 
O.OOE+OO 3.27E+03 O.OOE+OO 
O.OOE+OO O.OOE+OO 2.17E+03 
O.OOE+OO O.OOE+OO 2.17E+03 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO 2.17E+03 
O.OOE+OO O.OOE+OO O.OOE+OO 
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04/14/88 

Time > 

homog 0 mln 1 min 3 min 5 min 10 min 
-2.25 0 1 3 5 10 

dla. 

0.87 6.82E+05 3.98E+05 2.31E+05 3.40E+05 3.33E+05 2.66E+05 
1.04 7.51E+05 3.58E+05 2.74E+05 3.27E+05 3.33E+05 2.66E+05 
1.24 7.81E+05 4.24E+05 3.17E+05 4.17E+05 3.33E+05 2.82E+05 
1.48 8.81E+05 5.47E+05 4.08E+05 4.75E+05 4.59E+05 4.87E+05 
1.77 8.73E+05 5.15E+05 4.57E+05 4.49E+05 3.93E+05 3.87E+05 
2.11 6.20E+05 4.43E+05 3.60E+05 4.75E+05 3.02E+05 3.87E+05 
2.51 3.75E+05 3.26E+05 2.69E+05 3.14E+05 2.22E+05 2.27E+05 
3.00 1.84E+05 1.63E+05 2.15E+05 1.80E+05 1.31E+05 1.16E+05 
3.58 3.83E+04 1.56E+05 7.52E+04 5.77E+04 9.07E+04 7.75E+04 
4.27 1.53E+04 7.17E+04 1.07E+04 6.41E+04 5.04E+04 1.66E+04 
5.10 O.OOE+00 3.91E+04 2.69E+04 4.49E+04 3.02E+04 2.21E+04 
6.08 2.30E+04 1.96E+04 1.61E+04 O.OOE+00 3.02E+04 5.53E+03 
7.26 O.OOE+00 3.26E+04 2.15E+04 3.21E+04 2.52E+04 2.21E+04 
8.66 O.OOE+00 6.52E+03 2.15E+04 1.28E+04 O.OOE+00 5.53E+03 
10.33 O.OOE+00 2.61E+04 1.61E+04 6.41E+03 5.04E+03 l.llE+04 
12.33 1.53E+04 1.96E+04 2.69E+04 3.85E+04 3.53E+04 1.66E+04 
14.71 O.OOE+00 1.30E+04 5.37E+03 6.41E+03 5.04E+03 5.53E+03 
17.55 7.66E+03 6.52E+03 O.OOE+00 O.OOE+00 5.04E+03 1.66E+04 
20.94 O.OOE+00 O.OOE+00 5.37E+03 6.41E+03 O.OOE+00 O.OOE+00 
24.98 O.OOE+00 O.OOE+00 O.OOE+00 O.OOE+00 5.04E+03 O.OOE+00 
29.81 O.OOE+00 O.OOE+00 O.OOE+00 O.OOE+00 l.OlE+04 5.53E+03 
35.56 O.OOE+00 O.OOE+00 O.OOE+00 O.OOE+00 O.OOE+00 O.OOE+00 
42.43 O.OOE+00 O.OOE+00 O.OOE+00 O.OOE+00 O.OOE+00 O.OOE+00 
50.63 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+00 O.OOE+00 O.OOE+00 
60.41 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
86.00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
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15 min 20 min 25 min 30 min 45 min 
15 20 25 30 45 

dia. 

0.87 2.49E+05 2.20E+05 1.76E+05 1.45E+05 1.08E+05 
1.04 2.37E+05 1.89E+05 1.76E+05 1.33E+05 1.27E+05 
1.24 3.16E+05 2.77E+05 2.07E+05 2.06E+05 1.36E+05 
1.48 3.47E+05 3.73E+05 2.73E+05 2.78E+05 1.90E+05 
1.77 3.35E+05 2.20E+05 2.49E+05 2.14E+05 1.36E+05 
2.11 2.86E+05 2.28E+05 2.04E+05 1.83E+05 9.81E+04 
2.51 2.49E+05 1.76E+05 1.59E+05 9.15E+04 9.49E+04 
3.00 l.lOE+05 6.59E+04 5.87E+04 8.77E+04 5.06E+04 
3.58 6.69E+04 6.59E+04 5.18E+04 2.67E+04 1.58E+04 
4.27 3.04E+04 2.64E+04 2.42E+04 4.20E+04 6.33E+03 
5.10 1.83E+04 3.95E+04 1.04E+04 2.67E+04 6.33E+03 
6.08 6.08E+03 1.32E+04 1.04E+04 7.63E+03 3.16E+03 
7.26 1.22E+04 1.76E+04 3.46E+03 3.81E+03 3.16E+03 
8.66 6.08E+03 8.78E+03 O.OOE+OO O.OOE+OO 3.16E+03 
10.33 O.OOE+OO O.OOE+OO 3.46E+03 3.81E+03 O.OOE+OO 
12.33 1.22E+04 2.20E+04 2.07E+04 1.14E+04 6.33E+03 
14.71 6.08E+03 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
17.55 O.OOE+OO O.OOE+OO O.OOE+OO 3.81E+03 O.OOE+OO 
20.94 O.OOE+OO 4.39E+03 3.46E+03 O.OOE+OO O.OOE+OO 
24.98 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
29.81 O.OOE+OO O.OOE+OO O.OOE+OO 3.81E+03 O.OOE+OO 
35.56 6.08E+03 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
42.43 6.08E+03 4.39E+03 O.OOE+OO O.OOE+OO 3.16E+03 
50.63 O.OOE+OO O.OOE+OO 3.46E+03 O.OOE+OO 3.16E+03 
60.41 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO O.OOE+OO 3.81E+03 O.OOE+OO 
86.00 O.OOE+OO 4.39E+03 O.OOE+OO 3.81E+03 O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO 3.46E+03 O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
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419 

04/26/88 
Time > 

homog 0 min 1 min 3 min 5 min 10 min 
-1 0 1 3 5 10 

dia. 

0.87 1.16E+06 1.02E+06 7.25E+05 6.12E+05 7.50E+05 5.26E+05 
1.04 8.60E+05 8.93E+05 4.57E+05 5.44E+05 4.24E+05 4.92E+05 
1.24 1.23E+06 8.41E+05 4.83E+05 5.78E+05 4.69E+05 4.59E+05 
1.48 1.18E+06 6.65E+05 6.98E+05 7.07E+05 6.30E+05 6.42E+05 
1.77 8.53E+05 6.32E+05 5.00E+05 6.06E+05 4.78E+05 4.59E+05 
2.11 7.09E+05 5.08E+05 3.60E+05 5.28E+05 4.87E+05 4.70E+05 
2.51 4.99E+05 3.65E+05 2.52E+05 3.26E+05 3.17E+05 2.38E+05 
3.00 3.68E+05 1.37E+05 1.50E+05 1.63E+05 1.43E+05 1.55E+05 
3.58 2.63E+05 1.30E+05 1.07E+05 1.07E+05 8.93E+04 1.44E+05 
4.27 5.91E+04 5.21E+04 6.45E+04 3.93E+04 8.48E+04 6.64E+04 
5.10 5.91E+04 2.61E+04 2.15E+04 2.81E+04 5.36E+04 5.53E+04 
6.08 4.60E+04 3.26E+04 2.69E+04 2.81E+04 2.23E+04 l.llE+04 
7.26 1.31E+04 1.96E+04 2.69E+04 3.37E+04 2.68E+04 1.66E+04 
8.66 1.31E+04 1.96E+04 5.37E+03 1.68E+04 3.13E+04 l.llE+04 
10.33 6.57E+03 1.96E+04 O.OOE+OO 5.61E+03 O.OOE+OO O.OOE+OO 
12.33 O.OOE+OO 6.52E+03 O.OOE+OO 5.61E+03 1.79E+04 5.53E+03 
14.71 O.OOE+OO 6.52E+03 O.OOE+OO 1.12E+04 4.46E+03 5.53E+03 
17.55 1.97E+04 1.30E+04 O.OOE+OO 5.61E+03 O.OOE+OO O.OOE+OO 
20.94 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
24.98 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 4.46E+03 O.OOE+OO 
29.81 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
35.56 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
42.43 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
50.63 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
86.00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
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420 

15 min 20 min 
15 20 

dla. 

0.87 5.55E+05 5.36E+05 
1.04 4.74E+05 3.27E+05 
1.24 3.83E4-05 3.49E+05 
1.48 6.14E+05 4.83E+05 
1.77 4.64E+05 4.35E+05 
2.11 3.88E+05 4.02E+05 
2.51 2.53E+05 3.17E+05 
3.00 1.78E+05 1.82E+05 
3.58 1.08E+05 7.51E+04 
4.27 1.02E+05 1.02E+05 
5.10 2.69E+04 2.15E+04 
6.08 5.39E+04 1.07E+04 
7.26 1.62E+04 3.22E+04 
8.66 1.08E+04 2.15E+04 

10.33 1.08E+04 1.61E+04 
12.33 3.23E+04 5.36E+03 
14.71 5.39E+03 1.07E+04 
17.55 O.OOE+OO 5.36E+03 
20.94 1.08E+04 5.36E+03 
24.98 O.OOE+OO 5.36E+03 
29.81 O.OOE+OO O.OOE+OO 
35.56 O.OOE+OO O.OOE+OO 
42.43 O.OOE+OO O.OOE+OO 
50.63 O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO 
86.00 O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO 

25 min 30 min 45 min 
25 30 45 

4.63E+05 4.16E+05 2.72E+05 
3.54E+05 3.13E+05 1.89E+05 
3.22E+05 2.59E+05 2.28E+05 
5.08E+05 3.62E+05 2.69E+05 
3.41E+05 3.74E+05 2.06E+05 
1.99E+05 3.17E+05 2.11E+05 
1.22E+05 1.98E+05 1.18E+05 
1.03E+05 1.22E+05 7.95E+04 
7.72E+04 9.92E+04 4.94E+04 
4.50E+04 4.20E+04 5.49E+04 
3.22E+04 3.81E+04 1.65E+04 
1.93E+04 1.91E+04 8.23E+03 
1.93E+04 7.63E+03 8.23E+03 
1.93E+04 1.14E+04 1.65E+04 
6.43E+03 O.OOE+OO 8.23E+03 
6.43E+03 7.63E+03 8.23E+03 
6.43E+03 7.63E+03 2.74E+03 
1.29E+04 3.81E+03 2.74E+03 
6.43E+03 O.OOE+OO 2.74E+03 
O.OOE+OO 3.81E+03 O.OOE+OO 
O.OOE+OO O.OOE+OO 2.74E+03 
O.OOE+OO 3.81E+03 O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO 2.74E+03 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
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421 

04/28/88 
Time > 

homog 0 mln 1 miti 3 min 5 mlti 10 min 
-1 0 1 3 5 10 

dla. 

0.87 1.28E+06 9.38E+05 8.97E+05 7.57E+05 8.99E+05 5.83E+05 
1.04 l.OOE+06 6.91E+05 6.29E+05 6.35E+05 4.84E+05 4.26E+05 
1.24 9.78E+05 7.17E+05 6.66E+05 7.89E+05 4.95E+05 4.75E+05 
1.48 l.OlE+06 8.47E+05 8.27E+05 6.86E+05 6.45E+05 5.24E+05 
1.77 8.34E+05 6.71E+05 7.15E+05 6.48E+05 5.41E+05 4.26E+05 
2.11 8.34E+05 4.63E+05 5.43E+05 5.45E+05 3.40E+05 3.19E+05 
2;51 3.74E+05 3.98E+05 3.92E+05 2.63E+05 3.17E+05 2.21E+05 
3.00 2.95E+05 2.28E+05 2.69E+05 2.05E+05 1.56E+05 1.81E+05 
3,58 9.19E+04 1.37E+05 9.67E+04 8.34E+04 1.21E+05 6.37E+04 
4,27 O.OOE+OO 5.87E+04 7.52E+04 6.41E+04 4.03E+04 6.86E+04 
5.10 3.28E+04 5.87E+04 1.61E+04 2.57E+04 3.46E+04 4.90E+04 
6.08 3.28E+04 1.96E+04 O.OOE+OO 3.85E+04 2.88E+04 4.90E+03 
7,26 O.OOE+OO 1.30E+04 5.37E+03 1.92E+04 O.OOE+OO 1.96E+04 
8.66 O.OOE+OO O.OOE+OO 5.37E+03 1.92E+04 O.OOE+OO 4.90E+03 

10.33 O.OOE+OO 6.52E+03 1.07E+04 O.OOE+OO O.OOE+OO O.OOE+OO 
12.33 O.OOE+OO O.OOE+OO O.OOE+OO 6.41E+03 O.OOE+OO 4.90E+03 
14.71 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 4.90E+03 
17.55 6.57E+03 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
20.94 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 5.76E+03 O.OOE+OO 
24.98 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
29.81 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
35.56 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
42.43 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
50.63 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
86.00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
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15 min 20 min 
15 20 

dla. 

0.87 6.04E+05 4.59E+05 
1.04 4.69E+05 3.19E+05 
1.24 3.93E+05 3.77E+05 
1.48 4.26E+05 3.77E+05 
1.77 4.85E+05 3.96E+05 
2.11 3.29E+05 2.75E+05 
2.51 2.53E+05 2.22E+05 
3.00 1.40E+05 1.79E+05 
3.58 5.39E+04 7.24E+04 
4.27 4.31E+04 2.90E+04 
5.10 2.16E+04 3.86E+04 
6.08 2.16E+04 1.93E+04 
7.26 1.62E+04 4.83E+03 
8.66 2.69E+04 4.83E+03 
10.33 1.08E+04 O.OOE+OO 
12.33 1.62E+04 9.66E+03 
14.71 5.39E+03 9.66E+03 
17.55 O.OOE+OO O.OOE+OO 
20,94 5.39E+03 O.OOE+OO 
24.98 O.OOE+OO O.OOE+OO 
29.81 O.OOE+OO O.OOE+OO 
35.56 O.OOE+OO O.OOE+OO 
42.43 O.OOE+OO O.OOE+OO 
50.63 O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO 4.83E+03 
86.00 O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO 

25 min 30 min 45 min 
25 30 45 

3.14E+05 3.24E+05 9.59E+04 
2.57E+05 2.32E+05 9.59E+04 
2.61E+05 1.98E+05 9.13E+04 
3.76E+05 2.75E+05 l.OOE+05 
2.53E+05 1.89E+05 l.lOE+05 
2.04E+05 9.16E+04 7.76E+04 
1.31E+05 7.63E+04 6.39E+04 
6.12E+04 5.50E+04 5.93E+04 
4.49E+04 2.75E+04 3.65E+04 
2.04E+04 2.14E+04 9.13E+03 
2.86E+04 1.22E+04 1.37E+04 
2.04E+04 6.11E+03 1.37E+04 
4.08E+03 6.11E+03 O.OOE+OO 
4.08E+03 3.05E+03 O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
4.08E+03 3.05E+03 4.56E+03 
4.08E+03 O.OOE+OO O.OOE+OO 
8.16E+03 3.05E+03 O.OOE+OO 
O.OOE+OO 3.05E+03 O.OOE+OO 
4.08E+03 O.OOE+OO O.OOE+OO 
8.16E+03 O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
4.08E+03 3.05E+03 O.OOE+OO 
8.16E+03 3.05E+03 O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO 3.05E+03 O.OOE+OO 
O.OOE+OO O.OOE+OO 9.13E+03 
O.OOE+OO O.OOE+OO O.OOE+OO 
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423 

03/03/88 
Time > 

homog 0 min 1 min 3 min 5 min 10 min 
-1 0 1 3 5 10 

dia. 

0.87 6.76E+05 5.28E+05 4.62E+05 5.64E+05 6.16E+05 5.78E+05 
1.04 6.57E+05 6.13E+05 5.32E+05 5.45E+05 6.22E+05 3.87E+05 
1.24 8.40E+05 7.89E+05 5.91E+05 7.38E+05 7.37E+05 5.88E+05 
1.48 1.16E+06 9.58E+05 8.54E+05 9.04E+05 9.85E+05 7.60E+05 
1.77 9.85E+05 7.23E+05 7.57E+05 8.85E+05 7.09E+05 7.16E+05 
2.11 8.86E+05 8.34E+05 7.63E+05 8.34E+05 6.80E+05 6.22E+05 
2.51 5.65E+05 5.41E+05 4.30E+05 5.58E+05 4.38E+05 4.46E+05 
3.00 3.09E+05 3.13E+05 2.26E+05 3.01E+05 2.02E+05 2.25E+05 
3.58 1.12E+05 1.30E+05 1.29E+05 1.67E+05 6.34E+04 1.37E+05 
4.27 7.22E+04 7.82E+04 9.13E+04 2.57E+04 3.46E+04 4.41E+04 
5.10 6.57E+04 2.61E+04 3.76E+04 7.06E+04 3.46E+04 4.90E+04 
6.08 6.57E+03 1.96E+04 1.07E+04 6.41E+03 1.15E+04 1.96E+04 
7.26 O.OOE+OO 1.30E+04 1.07E+04 6.41E+03 O.OOE+OO 4.90E+03 
8.66 6.57E+03 O.OOE+OO 5.37E+03 6.41E+03 O.OOE+OO 9.80E+03 

10.33 O.OOE+OO O.OOE+OO 5.37E+03 O.OOE+OO O.OOE+OO O.OOE+OO 
12.33 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 4.90E+03 
14.71 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 4.90E+03 
17.55 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
20.94 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
24.98 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
29.81 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
35.56 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
42.43 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
50.63 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
86.00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 



www.manaraa.com

424 

15 min 20 min 
15 20 

dla. 

0.87 5.55E+05 5.042+05 
1.04 4.96E+05 5.10E+05 
1.24 5.17E+05 5.74E+05 
1.48 7.44E+05 8.15E+05 
1.77 7.76E+05 7.14E+05 
2.11 7.33E+05 6.92E+05 
2.51 5.01E+05 5.04E+05 
3.00 3.34E+05 2.20E+05 
3.58 1.46E+05 1.18E+05 
4.27 8.08E+04 1.02E+05 
5.10 4.85E+04 2.15E+04 
6.08 2.69E+04 1.07E+04 
7.26 5.39E+03 2.68E+04 
8.66 5.39E+03 1.07E+04 

10.33 2.69E+04 5.36E+03 
12.33 O.OOE+OO O.OOE+OO 
14.71 O.OOE+OO O.OOE+OO 
17.55 O.OOE+OO O.OOE+OO 
20.94 O.OOE+OO O'OOE+00 
24.98 O.OOE+OO O.OOE+OO 
29.81 O.OOE+OO O.OOE+OO 
35.56 O.OOE+OO O.OOE+OO 
42.43 O.OOE+OO O.OOE+OO 
50.63 O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO 
86.00 O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO 

25 min 30 min 45 min 
25 30 45 

5.19E+05 4.03E+05 3.16E+05 
4.09E+05 2.79E+05 3.16E+05 
6.23E+05 4.62E+05 3.66E+05 
7.33E+05 6.77E+05 5.22E+05 
6.43E+05 6.36E+05 4.89E+05 
4.64E+05 5.21E+05 3.45E+05 
4.34E+05 3.71E+05 2.22E+05 
2.04E+05 2.06E+05 1.60E+05 
l.lOE+05 1.78E+05 1.19E+05 
4.49E+04 1.19E+05 4.11E+04 
1.50E+04 6.86E+04 3.29E+04 
1.99E+04 2.29E+04 2.05E+04 
4.99E+03 1.37E+04 4.11E+03 
O.OOE+OO 9.15E+03 1.23E+04 
4.99E+03 1.83E+04 4.11E+03 
O.OOE+OO 9.15E+03 4.11E+03 
O.OOE+OO 9.15E+03 O.OOE+OO 
4.99E+03 O.OOE+OO 4.11E+03 
O.OOE+OO 4.57E+03 O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
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425 

03/01/88 
Time > 

homog 
-1 

0 min 
0 

1 min 
1 

3 min 
3 

5 min 10 min 
5 10 

dla. 

0.87 5.39E+05 6.11E+05 4.50E+05 4.57E+05 3.80E+05 3.92E+05 
1.04 6.51E+05 5.05E+05 5.20E+05 5.17E+05 3.66E+05 4.07E+05 
1.24 8.65E+05 6.52E+05 5.62E+05 5.32E+05 5.18E+05 4.80E+05 
1.48 9.16E+05 8.69E+05 7.12E+05 7.21E+05 6.97E+05 6.81E+05 
1.77 7.68E4:05 8.89E+05 6.37E+05 6.66E+05 6.12E+05 6.62E+05 
2.11 7.07E+05 6.67E+05 6.12E+05 6.51E+05 5.40E+05 4.41E+05 
2.51 4.38E+05 5.25E+05 4.33E+05 4.52E+05 4.06E+05 3.92E+05 
3.00 1.88E+05 2.88E+05 2.62E+05 3.48E+05 2.28E+05 2.94E+05 
3.58 7.12E+04 l.OlE+05 1.12E+05 1.59E+05 1.34E+05 8.82E+04 
4.27 4.58E+04 4.55E+04 7.08E+04 7.95E+04 4.91E+04 6.37E+04 
5.10 2.54E+04 1.52E+04 2.91E+04 2.49E+04 2.68E+04 9.80E+03 
6.08 5.09E+03 l.OlE+04 8.33E+03 3.48E+04 3.13E+04 3.43E+04 
7.26 1.02E+04 5.05E+03 1.25E+04 1.49E+04 O.OOE+OO 4.90E+03 
8.66 5.09E+03 O.OOE+OO 4.16E+03 O.OOE+OO O.OOE+OO 9.80E+03 
10.33 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
12.33 5.09E+03 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
14.71 O.OOE+OO O.OOE+OO 4.16E+03 O.OOE+OO O.OOE+OO O.OOE+OO 
17.55 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 4.46E+03 O.OOE+OO 
20.94 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
24.98 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
29.81 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
35.56 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
42.43 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
50.63 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
86.00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
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426 

15 min 
15 

20 min 
20 

25 min 
25 

30 min 
30 

45 min 
45 

dia. 

0.87 4.26E+05 3.97E+05 
1.04 4.04E+05 3.97E+05 
1.24 4.85E+05 4.72E+05 
1.48 7.76E+05 6.06E+05 
1.77 7.38E+05 6.54E+05 
2.11 6.31E+05 5.85E+05 
2.51 4.47E+05 4.45E+05 
3.00 2.80E+05 2.68E+05 
3.58 9.16E+04 1.98E+05 
4.27 1.29E+05 5.90E+04 
5.10 6.47E+04 4.83E+04 
6.08 3.23E+04 2.68E+04 
7.26 5.39E+03 2.68E+04 
8.66 1.08E+04 5.36E+03 
10.33 O.OOE+OO O.OOE+OO 
12.33 O.OOE+OO O.OOE+OO 
14.71 O.OOE+OO O.OOE+OO 
17.55 0.OOE+00 0.OOE+OO 
20.94 O.OOE+OO O.OOE+OO 
24.98 O.OOE+OO O.OOE+OO 
29.81 O.OOE+OO O.OOE+OO 
35.56 O.OOE+OO O.OOE+OO 
42.43 O.OOE+OO O.OOE+OO 
50.63 O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO 
86.00 O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO 

4.04E+05 3.96E+05 2.94E+05 
4.40E+05 3.17E+05 2.47E+05 
4.04E+05 4.94E+05 3.85E+05 
6.19E+05 5.46E+05 4.70E+05 
5.61E+05 4.61E+05 3.97E+05 
5.25E+05 4.87E+05 3.82E+05 
4.08E+05 3.73E+05 2.53E+05 
2.06E+05 2.09E+05 1.47E+05 
7.18E+04 1.24E+05 9.40E+04 
8.53E+04 7.19E+04 6.46E+04 
4.04E+04 4.58E+04 1.76E+04 
1.35E+04 3.60E+04 1.18E+04 
1.80E+04 1.64E+04 2.94E+03 
4.49E+03 6.54E+03 8.81E+03 
4.49E+03 O.OOE+OO 1.18E+04 
4.49E+03 3.27E+03 O.OOE+OO 
O.OOE+OO 9.81E+03 O.OOE+OO 
4.49E+03 6.54E+03 O.OOE+OO 
O.OOE+OO 3.27E+03 O.OOE+OO 
4.49E+03 3.27E+03 O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
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427 

02/23/88 
Time > 

homog 
-1 

0 min 
0 

1 min 
1 

3 min 
3 

5 min 10 min 
5 10 

dla. 

0.87 4.96E+05 5.20E+05 3.84E+05 3.86E+05 4.19E+05 3.54E+05 
1.04 5.70E+05 4.93E+05 4.51E+05 4.31E+05 4.92E+05 3.76E+05 
1.24 7.54E+05 8.03E+05 5.11E+05 6.29E+05 5.65E+05 3.47E+05 
1.48 9.28E+05 9.12E+05 6.47E+05 8.44E+05 7.26E+05 5.31E+05 
1.77 1.02E+06 6.66E+05 5.49E+05 6.02E+05 6.37E+05 4.57E+05 
2.11 7.44E+05 6.66E+05 4.51E+05 4.40E+05 5.73E+05 3.69E+05 
2.51 6.71E+05 4.liE+05 2.78E+05 3.41E+05 4.03E+05 2.21E+05 
3.00 4.04E+05 2.55E+05 1.50E+05 2.33E+05 1.61E+05 1.55E+05 
3.58 2.57E+05 1.64E+05 8.27E+04 1.71E+05 1.13E+05 5.90E+04 
4.27 1.47E+05 1.55E+05 5.26E+04 9.88E+04 4.84E+04 3.69E+04 
5.10 2.76E+04 5.47E+04 2.26E+04 1.80E+04 4.84E+04 4.43E+04 
6.08 1.84E+04 2.74E+04 2.26E+04 1.80E+04 8.06E+03 1.48E+04 
7.26 O.OOE+OO 2.74E+04 3.01E+04 1.80E+04 1.61E+04 7.38E+03 
8.66 9.19E+03 9.12E+03 7.52E+03 O.OOE+OO O.OOE+OO O.OOE+OO 
10.33 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 7.38E+03 
12.33 O.OOE+OO O.OOE+OO O.OOE+OO 8.98E+03 8.06E+03 O.OOE+OO 
14.71 O.OOE+OO O.OOE+OO O.OOE+OO 8.98E+03 O.OOE+OO 7.38E+03 
17.55 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
20.94 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
24.98 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
29.81 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
35.56 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
42.43 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
50.63 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
86.00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
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87 
04 
24 
48 
77 
11 
51 
00 
58 
27 
10 
08 
26 
66 
33 
33 
71 
55 
94 
98 
81 
56 
43 
63 
41 
08 
00 
62 

15 min 20 min 25 min 
15 20 25 

30 min 45 min 
30 45 

2.85E+05 
2.92E+05 
3.82E+05 
5.77E+05 
4.38E+05 
5.08E+05 
2.64E+05 
1.25E+05 
l.llE+05 
5.56E+04 
4.17E+04 
3.48E+04 
2.09E+04 
O.OOE+OO 
6.95E+03 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
0.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 

3.21E+05 
2.42E+05 
3.39E+05 
4.18E+05 
4.36E+05 
3.51E+05 
2.12E+05 
1.64E+05 
7.27E+04 
6.06E+04 
3.63E+04 
3.03E+04 
1.82E+04 
O.OOE+OO 
6.06E+03 
6.06E+03 
6.06E+03 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
6.06E+03 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 

2.65E+05 
2.24E+05 
3.37E+05 
3.32E+05 
3.14E+05 
2.15E+05 
2.29E+05 
1.57E+05 
5.39E+04 
5.39E+04 
1.80E+04 
2.69E+04 
4.49E+03 
8.98E+03 
O.OOE+OO 
O.OOE+OO 
8.98E+03 
1.80E+04 
4.49E+03 
0.OOE+OO 
8.98E+03 
O.OOE+OO 
O.OOE+OO 
4.49E+03 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
0.OOE+OO 
O.OOE+OO 

3.11E+05 
3.29E+05 
2.38E+05 
4.16E+05 
3.29E+05 
3.52E+05 
1.51E+05 
1.05E+05 
8.69E+04 
5.03E+04 
1.37E+04 
9.15E+03 
2.29E+04 
O.OOE+OO 
1.37E+04 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
4 57E+03 
O.OOE+OO 
9.15E+03 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
0.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 

2.35E+05 
2.03E+05 
2.29E+05 
2.67E+05 
2.59E+05 
2.09E+05 
1.73E+05 
8.81E+04 
5.58E+04 
3.23E+04 
5.88E+03 
1.47E+04 
5.88E+03 
2.94E+03 
O.OOE+OO 
O.OOE+OO 
2.94E+03 
2.94E+03 
5.88E+03 
O.OOE+OO 
O.OOE+OO 
5.88E+03 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
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429 

02/25/88 
Time > 

homog 0 min 1 min 3 min 5 min 
- 1 0  1 3  0 1 3 5 

10 min 
10 

dia. 

0.87 7.48E+05 7.24E+05 5.22E+05 5.11E+05 4.99E+05 5.20E+05 
1.04 6.72E+05 6.22E+05 4.98E+05 5.44E+05 4.69E+05 5.15E+05 
1.24 7.33E+05 7.30E+05 6.35E+05 7.18E+05 5.65E+05 6.42E+05 
1.48 l.OlE+06 1.02E+06 8.70E+05 8.92E+05 7.21E+05 B.13E+05 
1.77 7.63E+05 9.30E+05 6.49E+05 6.90E+05 6.30E+05 6.58E+05 
2.11 7.07E+05 7.01E+05 5.26E+05 6.96E+05 5.90E+05 5.31E+05 
2.51 3.15E+05 4.96E+05 3.62E+05 4.21E+05 3.18E+05 4.87E+05 
3.00 1.78E+05 3.42E+05 1.69E+05 2.19E+05 2.27E+05 2.66E+05 
3.58 8.14E+04 1.25E+05 7.99E+04 1.40E+05 l.llE+05 1.38E+05 
4.27 4.07E+04 7.41E+04 3.29E+04 6.73E+04 4.54E+04 4.43E+04 
5.10 5.09E+03 5.70E+04 9.40E+03 1.68E+04 2.52E+04 2.21E+04 
6.08 1.02E+04 1.14E+04 4.70E+03 5.61E+03 O.OOE+OO 4.43E+04 
7.26 2.04E+04 5.70E+03 4.70E+03 5.61E+03 l.OlE+04 5.53E+03 
8.66 O.OOE+OO 5.70E+03 O.OOE+OO 5.61E+03 l.OlE+04 5.53E+03 
10.33 O.OOE+OO O.OOE+OO O.OOE+OO 5.61E+03 l.OlE+04 5.53E+03 
12.33 5.09E+03 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
14.71 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
17.55 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
20.94 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
24.98 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
29.81 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
35.56 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
42.43 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
50.63 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
86.00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
102,62 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
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430 

15 min 20 min 
15 20 

dla, 

0.87 4.20E+05 3.80E+05 
1.04 3.99E+05 2.90E+05 
1.24 4.20E+05 3.69E+05 
1.48 6.68E+05 5.14E+05 
1.77 5.61E+05 5.14E+05 
2.11 6.74E+05 5.04E+05 
2.51 4.74E+05 2.56E+05 
3.00 2.59E+05 2.11E+05 
3.58 1.56E+05 7.25E+04 
4.27 1.08E+05 5.52E+04 
5.10 6.47E+04 4.83E+04 
6.08 1.62E+04 1.38E+04 
7.26 3.77E+04 1.38E+04 
8.66 5.39E+03 6.91E+03 
10.33 1.08E+04 O.OOE+OO 
12.33 O.OOE+OO 1.04E+04 
14.71 O.OOE+OO 1.04E+04 
17.55 O.OOE+OO O.OOE+OO 
20.94 O.OOE+OO 1.38E+04 
24.98 O.OOE+OO 6.91E+03 
29.81 O.OOE+OO O.OOE+OO 
35.56 O.OOE+OO O.OOE+OO 
42.43 O.OOE+OO O.OOE+OO 
50.63 O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO 
86.00 O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO 

25 min 30 min 45 min 
25 30 45 

2.60E+05 2.35E+05 1.23E+05 
2.28E+05 2.81E+05 1.21E+05 
3.43E+05 3.17E+05 2.22E+05 
4.69E+05 4.19E+05 3.18E+05 
3.88E+05 3.17E+05 2.55E+05 
3.34E+05 3.63E+05 2.03E+05 
2.09E+05 1.70E+05 1.26E+05 
1.44E+05 1.28E+05 4.39E+04 
8.02E+04 7.52E+04 3.84E+04 
3.85E+04 4.25E+04 2.47E+04 
1.60E+04 1.96E+04 8.23E+03 
6.42E+03 2.94E+04 2.74E+03 
9.63E+03 3.27E+03 l.lOE+04 
9.63E+03 1.31E+04 5.49E+03 
3.21E+03 3.27E+03 2.74E+03 
1.28E+04 6.54E+03 O.OOE+OO 
O.OOE+OO 6.54E+03 O.OOE+OO 
3.21E+03 6.54E+03 2.74E+03 
9.63E+03 1.31E+04 O.OOE+OO 
6.42E+03 3.27E+03 O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO 3.27E+03 2.74E+03 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO 2.74E+03 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
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431 

05/04/88 
Time > 

homog 
-1 

0 min 
0 

1 min 
1 

3 min 
3 

5 min 10 min 
5 10 

dia. 

0.87 5.80E+05 6.65E+05 5.00E+05 4.81E+05 3.66E+05 2.40E+05 
1.04 8.16E+05 5.15E+05 5.59E+05 4.75E+05 3.17E+05 2.30E+05 
1.24 8.33E+05 7.82E+05 8.11E+05 5.64E+05 4.69E+05 2.74E+05 
1.48 1.02E+06 1.07E+06 9.51E+05 8.15E+05 5.67E+05 3.38E+05 
1.77 9.19E+05 9.32E+05 7.09E+05 8.02E+05 5.13E+05 3.14E+05 
2.11 8.50E+05 9.91E+05 7.74E+05 6.48E+05 5.05E+05 3.58E+05 
2.51 5.34E+05 5.87É+05 4.83E+05 5.20E+05 4.20E+05 2.60E+05 
3.00 2.70E+05 3.13E+05 2.58E+05 3.08E+05 2.54E+05 2.35E+05 
3.58 8.04E+04 1.76E+05 1.29E+05 2.50E+05 1.92E+05 1.57E+05 
4.27 3.45E+04 1.17E+05 9.13E+04 8.98E+04 1.16E+05 9.80E+04 
5.10 3.45E+04 5.21E+04 1.61E+04 4.49E+04 5.80E+04 7.84E+04 
6.08 O.OOE+OO 1.96E+04 2.15E+04 O.OOE+OO 6.25E+04 7.35E+04 
7.26 O.OOE+OO 1.96E+04 5.37E+03 6.41E+03 2.23E+04 3.43E+04 
8.66 O.OOE+OO O.OOE+OO O.OOE+OO 6.41E+03 1.79E+04 5.39E+04 
10.33 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 4.46E+03 1.96E+04 
12.33 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 4.90E+03 
14.71 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 9.80E+03 
17.55 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 4.90E+03 
20.94 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
24.98 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
29.81 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
35.56 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
42.43 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
50.63 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
86.00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
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15 min 20 min 
15 20 

dla. 

0.87 1.99E+05 1.35E+05 
1.04 2.23E+05 1.16E+05 
1.24 1.84E+05 1.35E+05 
1.48 2.57E+05 1.55E+05 
1.77 2.14E+05 8.21E+04 
2.11 1.89E+05 l.llE+05 
2.51 1.75E+05 8.21E+04 
3.00 1.07E+05 4.35E+04 
3.58 6.31E+04 1.93E+04 
4.27 6.79E+04 2.90E+04 
5.10 2.91E+04 3.38E+04 
6.08 1.94E+04 O.OOE+00 
7.26 3.40E+04 1.45E+04 
8.66 9.70E+03 9.66E+03 
10.33 1.94E+04 1.45E+04 
12.33 1.94E+04 4.83E+03 
14.71 3.40E+04 O.OOE+00 
17.55 4.85E+03 9.66E+03 
20.94 O.OOE+00 O.OOE+00 
24.98 1.46E+04 9.66E+03 
29.81 O.OOE+00 1.93E+04 
35.56 O.OOE+00 O.ÔOE+OO 
42.43 O.OOE+OO O.OOE+OO 
50.63 O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO O.OOE+OO 
72,08 O.OOE+OO 0,OOE+00 
86,00 O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO 

25 min 30 min 45 min 
25 30 45 

1.38E+05 6.41E+04 6.59E+04 
7.38E+04 6.19E+04 2.47E+04 
9.63E+04 6.87E+04 4.94E+04 
1.22E+05 8.93E+04 4.94E+04 
1.06E+05 4.35E+04 4.53E+04 
1.16E+05 5.73E+04 4.53E+04 
5.46E+04 2.98E+04 2.68E+04 
4.81E+04 3.67E+04 8.23E+03 
4.49E+04 1.83E+04 1.65E+b4 
6.42E+03 2.29E+03 4.12E+03 
1.28E+04 9.16E+03 4.12E+03 
6.42E+03 9.16E+03 2.06E+03 
1.28E+04 2.29E+03 2.06E+03 
6.42E+03 2.29E+03 O.OOE+OO 
O.OOE+OO 2.29E+03 O.OOE+OO 
3.21E+03 4.58E+03 8.23E+03 
3.21E+03 2.29E+03 O.OOE+OO 
6.42E+03 2.29E+03 6.17E+03 
O.OOE+OO 4.58E+03 6.17E+03 
3.21E+03 1.37E+04 6.17E+03 
1.28E+04 4.58E+03 4.12E+03 
O.OOE+OO O.OOE+OO 2.06E+03 
9.63E+03 6.87E+03 2.06E+03 
O.OOE+OO O.OOE+OO 2.06E+03 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO 2.29E+03 O.OOE+OO 
O.OOE+OO O.OOE+OO 0,00E+00 
O.OOE+OO O.OOE+OO O.OOE+OO 
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03/17/88 
Time > 

homog 0 min 1 min 3 min 5 min 10 min 
-1 0 1 3 5 10 

dia. 

0.87 5.44E+05 6.72E+05 6.23E+05 6.09E+05 5.49E+05 4.43E+05 
1.04 4.12E+05 5.71E+05 5.16E+05 4.36E+05 5.75E+05 6.09E+05 
1.24 6.97E+05 8.08E+05 6.34E+05 6.99E+05 6.30E+05 7.52E+05 
1.48 8.85E+05 1.05E+06 8.86E+05 9.11E+05 9.12E+05 9.52E+05 
1.77 6.77E+05 9.14E+05 7.84E+05 7.38E+05 7.26E+05 7.14E+05 
2.11 6.72E+05 9.45E+05 7.04E+05 7.70E+05 7.06E+05 7.41E+05 
2.51 4.58E+05 5.46E+05 4.03E+05 5.13E+05 3.12E+05 5.20E+05 
3.00 1.93E+05 1.72E+05 1.72E+05 2.50E+05 1.41E+05 2.49E+05 
3.58 1.37E+05 8.59E+04 3.76E+04 8.34E+04 7.56E+04 1.60E+05 
4.27 7.12E+04 4.55E+04 1.61E+04 1.92E+04 l.OlE+04 4.98E+04 
5.10 3.05E+04 5.05E+03 2.15E+04 2.57E+04 5.04E+03 l.llE+04 
6.08 1.53E+04 1.52E+04 5.37E+03 1.92E+04 5.04E+03 O.OOE+OO 
7.26 O.OOE+OO l.OlE+04 5.37E+03 O.OOE+OO 1.51E+04 5.53E+03 
8.66 1.02E+04 O.OOE+OO O.OOE+OO O.OOE+OO 5.04E+03 O.OOE+OO 

10.33 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
12.33 O.OOE+OO O.OOE+OO O.OOE+OO 6.41E+03 5.04E+03 O.OOE+OO 
14.71 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
17.55 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
20.94 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
24.98 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
29.81 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
35.56 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
42.43 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
50.63 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
86.00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
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15 min 20 min 
15 20 

dla. 

0.87 6.02E+05 4.30E+05 
1.04 4.87E+05 4.35E+05 
1.24 6.27E+05 4.01E+05 
1.48 9.25E+05 6.81E+05 
1.77 7.54E+05 6.96E+05 
2.11 6.63E+05 6.28E+05 
2.51 4.56E+05 4.97E+05 
3.00 2.80E+05 2.95E+05 
3.58 l.lOE+05 1.64E+05 
4.27 6.69E+04 2.90E+04 
5.10 3.04E+04 1.45E+04 
6.08 1.22E+04 1.45E+04 
7.26 O.OOE+OO O.OOE+OO 
8.66 6.08E+03 O.OOE+OO 
10.33 O.OOE+OO O.OOE+OO 
12.33 O.OOE+OO 4.83E+03 
14.71 O.OOE+OO O.OOE+OO 
17.55 O.OOE+OO O.OOE+OO 
20.94 O.OOE+OO O.OOE+OO 
24.98 O.OOE+OO O.OOE+OO 
29.81 O.OOE+OO O.OOE+OO 
35.56 O.OOE+OO O.OOE+OO 
42.43 O.OOE+OO O.OOE+OO 
50.63 O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO 
86.00 O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO 

25 min 30 min 45 min 
25 30 45 

3.67E+05 3.45E+05 2.65E+05 
3.51E+05 2.83E+05 1.68E+05 
4.49E+05 3.54E+05 2.69E+05 
7.27E+05 5.57E+05 4.11E+05 
5.39E+05 5.91E+05 3.44E+05 
5.88E+05 4.33E+05 2.73E+05 
4.04E+05 3.16E+05 1.94E+05 
2.49E+05 2.66E+05 1.57E+05 
1.63E+05 1.83E+05 6.35E+04 
1.02E+05 8.74E+04 4.11E+04 
4.90E+04 7.90E+04 1.87E+04 
3.27E+04 5.82E+04 2.99E+04 
2.04E+04 2.50E+04 O.OOE+OO 
2.04E+04 3.74E+04 O.OOE+OO 
8.16E+03 1.25E+04 O.OOE+OO 
8.16E+03 8.32E+03 1.49E+04 
4.08E+03 O.OOE+OO 7.47E+03 
O.OOE+OO 4.16E+03 1.49E+04 
8.16E+03 4.16E+03 7.47E+03 
O.OOE+OO 4.16E+03 3.74E+03 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 



www.manaraa.com

435 

03/29/88 
Time > 

homog 
-1 

0 min 
0 

1 min 
1 

3 min 
3 

5 min 10 min 
5 10 

dia. 

0.87 4.63E+05 5.35E+05 4.66E+05 3.73E+05 3.84E+05 4.70E+05 
1.04 4.94E+05 5.25E+05 4.75E+05 4.57E+05 4.46E+05 4.21E+05 
1.24 5.50E+05 6.06E+05 4.83E+05 5.62E+05 5.09E+05 5.03E+05 
1.48 8.65E+05 8.08E+05 6.45E+05 7.26E+05 8.97E+05 5.86E+05 
1.77 9.11E+05 7.38E+05 6.33E+05 6.41E+05 6.25E+05 5.86E+05 
2.11 6.87E+05 7.48E+05 6.29E+05 5.12E+05 6.47E+05 6.20E+05 
2.51 4.83E+05 6.31E+05 4.37E+05 4.92E+05 4.60E+05 4.70E+05 
3.00 3.21E+05 3.23E+05 2.08E+05 1.99E+05 2.05E+05 2.71E+05 
3.58 1.63E+05 1.46E+05 1.12E+05 8.95E+04 8.04E+04 1.38E+05 
4.27 7.63E+04 4.55E+04 4.16E+04 1.99E+04 4.46E+04 4.43E+04 
5.10 7.12E+04 l.OlE+04 4.16E+03 1.99E+04 1.79E+04 3.87E+04 
6.08 2.04E+04 2.02E+04 4.16E+03 4.97E+03 1.34E+04 1.66E+04 
7.26 5.09E+03 O.OOE+OO 2.08E+04 9.94E+03 O.OOE+OO O.OOE+OO 
8.66 1.02E+04 l.OlE+04 O.OOE+OO 4.97E+03 O.OOE+OO 1.66E+04 

10.33 5.09E+03 O.OOE+OO O.OOE+OO O.OOE+OO 8.93E+03 O.OOE+OO 
12.33 O.OOE+OO 5.05E+03 O.OOE+OO O.OOE+OO 4.46E+03 O.OOE+OO 
14.71 5.09E+03 5.05E+03 O.OOE+OO O.OOE+OO 4.46E+03 O.OOE+OO 
17.55 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
20.94 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
24.98 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
29.81 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
35.56 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
42.43 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
50.63 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
86.00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
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87 
04 
24 
48 
77 
11 
51 
00 
58 
27 
10 
08 
26 
66 
33 
33 
71 
55 
94 
98 
81 
56 
43 
63 
41 
08 
00 
62 
44 

15 min 
15 

20 min 
20 

25 min 
25 

30 min 
30 

45 min 
45 

4.90E+05 
3.61E+05 
3.93E+05 
7.17E+05 
5.87E+05 
5.17E+05 
4.74E+05 
3.18E+05 
1.72E+05 
8.08E+04 
3.23E+04 
2.69E+04 
1.62E+04 
5.39E+03 
5.39E+03 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 

3.53E+05 
3.53E+05 
4.15E+05 
4.93E+05 
6.09E+05 
4.40E+05 
3.38E+05 
1.84E+05 
3.86E+04 
9.18E+04 
4.35E+04 
9.66E+03 
9.66E+03 
9.66E+03 
4.83E+03 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 

3.14E+05 
2.86E+05 
4.04E+05 
4.86E+05 
4.33E+05 
4.41E+05 
2.78E+05 
1.92E+05 
8.16E+04 
6.53E+04 
1.63E+04 
1.63E+04 
8.16E+03 
4.08E+03 
4.08E+03 
8.16E+03 
4.08E+03 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 

2.06E+05 
1.78E+05 
3.11E+05 
4.57E+05 
3.93E+05 
4.03E+05 
2.97E+05 
1.46E+05 
1.42E+05 
5.95E+04 
1.83E+04 
9.15E+03 
2.29E+04 
9.15E+03 
O.OOE+OO 
9.15E+03 
4.57E+03 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 

7.35E+04 
9.40E+04 
1.79E+05 
2.17E+05 
2.12E+05 
2.29E+05 
1.47E+05 
1.12E+05 
4.41E+04 
3.82E+04 
1.76E+04 
5.88E+03 
2.06E+04 
1.18E+04 
5.88E+03 
2.94E+03 
2.94E+03 
O.OOE+OO 
1.47E+04 
1.18E+04 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
2.94E+03 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
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04/12/88 
Time > 

homog 
-1 

0 min 
0 

1 min 
1 

3 min 
3 

5 min 10 min 
5 10 

dla. 

0.87 5.60E+05 7.13E+05 4.70E+05 6.23E+05 5.22E+05 3.26E+05 
1.04 6.31E+05 7.24E+05 6.06E+05 5.89E+05 6.12E+05 3.87E+05 
1.24 6.51E+05 9.35E+05 6.58E+05 8.03E+05 6.70E+05 5.70E+05 
1.48 8.45E+0B 1.21E+06 9.31E+05 1.25E+06 9.06E+05 7.91E+05 
1.77 7.02E+05 9.64E+05 7.57E+05 8.14E+05 8.17E+05 5.98E+05 
2.11 5.55E+05 8.27E+05 6.58E+05 9.09E+05 6.47E+05 5.31E+05 
2.51 4.99E+05 4.79E+05 4.61E+05 5.72E+05 3.93E+05 4.21E+05 
3.00 1.88E+05 2.85E+05 1.97E+05 2.41E+05 2.63E+05 2.21E+05 
3.58 5.60E+04 9.69E+04 9.40E+04 8.98E+04 1.12E+05 9.96E+04 
4.27 4.07E+04 4.56E+04 2.82E+04 5.05E+04 2.68E+04 5.53E+04 
5.10 2.04E+04 2.85E+04 2.35E+04 3.37E+04 8.93E+03 4.43E+04 
6.08 1.02E+04 1.14E+04 1.41E+04 2.24E+04 4.46E+03 3.32E+04 
7.26 5.09E+03 5.70E+03 4.70E+03 5.61E+03 4.46E+03 2.77E+04 
8.66 5.09E+03 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 5.53E+03 
10.33'5.09E+03 O.OOE+OO O.OOE+OO O.OOE+OO 4.46E+03 O.OOE+OO 
12.33 5.09E+03 O.OOE+OO O.OOE+OO 5.61E+03 O.OOE+OO O.OOE+OO 
14.71 O.OOE+OO O.OOE+OO O.OOE+OO 5.61E+03 O.OOE+OO O.OOE+OO 
17.55 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
20.94 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
24.98 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
29.81 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
35.56 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
42.43 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.QOE+OO 
50.63 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
86.00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
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15 min 20 min 
• 15 20 

dla. 

0.87 2.80E+05 2.18E+05 
1.04 2.74E+05 2.85E+05 
1.24 4.20E+05 3.15E+05 
1.48 6.15E+05 3.57E+05 
1.77 4.69E+05 2.54E+05 
2.11 4.56E+05 3.69E+05 
2.51 3.59E+05 3.63E+05 
3.00 2.37E+05 2.18E+05 
3.58 1.83E+05 1.09E+05 
4.27 1.03E+05 1.O9E+05 
5.10 7.91E+04 7.27E+04 
6.08 1.83E+04 1.82E+04 
7.26 2.43E+04 6.66E+04 
8.66 1.22E+04 3.03E+04 

10.33 6.08E+03 2.42E+04 
12.33 6.08E+03 1.82E+04 
14.71 O.OOE+OO O.OOE+OO 
17.55 O.OOE+OO O.OOE+OO 
20.94 O.OOE+OO O.OOE+OO 
24.98 O.OOE+OO O.OOE+OO 
29.81 O.OOE+OO O.OOE+OO 
35.56 O.OOE+OO O.OOE+OO 
42.43 O.OOE+OO O.OOE+OO 
50.63 O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO O.OOE+OO 
72,08 O.OOE+OO O.OOE+OO 
86,00 O,0OE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO 

25 min 30 min 45 min 
25 30 45 

1.76E+05 1.79E+05 9.11E+04 
2.16E+05 1.37E+05 8.23E+04 
2.53E+05 1.87E+05 8.52E+04 
3.27E+05 2.58E+05 1.38E+05 
3.10E+05 2.20E+05 8.23E+04 
3.27E+05 2.00E+05 9.70E+04 
2.57E+05 1.16E+05 7.64E+04 
2.33E+05 1.37E+05 7.35E+04 
1.18E+05 5.82E+04 4.11E+04 
8.16E+04 7.49E+04 1.18E+04 
4.49E+04 4.58E+04 1.47E+04 
3.27E+04 5.41E+04 1.47E+04 
3.67E+04 2.50E+04 1.76E+04 
1.63E+04 1.66E+04 5.88E+03 
2.04E+04 4.16E+03 1.18E+04 
2.45E+04 1.25E+04 5.88E+03 
2.04E+04 1.25E+04 1.76E+04 
4.08E+03 4.16E+03 5.88E+03 
O.OOE+OO 4.16E+03 2.94E+03 
O.OOE+OO O.OOE+OO 2.94E+03 
O.OOE+OO O.OOE+OO 2.94E+03 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO 2.94E+03 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO 0,00E+00 O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
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04/07/88 
Time > 

homog 0 min 1 min 3 min 5 min 10 min 
-3 0 1 3 5 10 

dla. 

1.04 6.43E+05 5.99E+05 5.69E+05 4.15E+05 4.33E+05 4.43E+05 
1.24 8.33E+05 6.61E+05 4.42E+05 5.61E+05 4.18E+05 4.76E+05 
1.48 8.04E+05 7.70E+05 5.31E+05 6.29E+05 4.74E+05 5.81E+05 
1.77 l.OOE+06 1.07E+06 7.33E+05 8.31E+05 7.41E+05 6.92E+05 
2.11 7.98E+05 8.95E+05 5.88E+05 7.24E+05 6.15E+05 5.70E+05 
2 51 4.77E+05 8.55E+05 6.16E+05 6.40E+05 7.26E+05 7.36E+05 
3.00 2.93E+05 5.36É+05 4.65E+05 5.33E+05 5.14E+05 4.92E+05 
3.58 1.44E+05 2.68E+05 2.59E+05 3.65E+05 3.12E+05 3.60E+05 
4.27 6.89E+04 1.65E+05 7.99E+04 1.35E+05 1.41E+05 1.99E+05 
5.10 5.17E+04 5.13E+04 1.41E+04 6.73E+04 5.54E+04 5.53E+04 
6.08 2.87E+04 5.13E+04 1.41E+04 4.49E+04 3.53E+04 4.43E+04 
7.26 O.OOE+OO 1.71E+04 2.82E+04 5.61E+03 1.51E+04 2.77E+04 
8.66 5.74E+03 5.70E+03 9.40E+03 2.24E+04 5.04E+03 4.43E+04 
10.33 5.74E+03 O.OOE+OO O.OOE+OO 1.12E+04 O.OOE+OO 1.66E+04 
12.33 5.74E+03 O.OOE+OO O.OOE+OO O.OOE+OO 5.04E+03 O.OOE+OO 
13.46 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 5.53E+03 
14.71 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 5.53E+03 
17.55 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
20.94 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
24.98 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
29.81 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
35.56 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
42.43 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
50.63 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
86.00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
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15 min 20 min 
15 20 

dla. 

1.04 3.35E+05 4.00E+05 
1.24 4.20E+05 3.27E+05 
1.48 5.78E+05 4.00E+05 
1.77 6.27E+05 6.84E+05 
2.11 6.08E+05 4.60E+05 
2.51 5.96E+05 6.54E+05 
3.00 4.38E+05 5.09E+05 
3.58 2.62E+05 2.54E+05 
4.27 1.70E+05 1.82E+05 
5.10 9.13E+04 8.48E+04 
6.08 3.04E+04 5.45E+04 
7.26 O.OOE+OO 3.63E+04 
8.66 O.OOE+OO 2.42E+04 
10.33 6.08E+03 1.21E+04 
12.33 6.08E+03 1.21E+04 
13.46 O.OOE+OO 6.06E+03 
14.71 O.OOE+OO O.OOE+OO 
17.55 O.OOE+OO O.OOE+OO 
20.94 O.OOE+OO O.OOE+OO 
24.98 O.OOE+OO O.OOE+OO 
29.81 O.OOE+OO O.OOE+OO 
35.56 O.OOE+OO O.OOE+OO 
42.43 O.OOE+OO O.OOE+OO 
50.63 O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO 
86.00 O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO 

25 min 30 min 45 min 
25 30 45 

2.93E+05 2:06E+05 1.09E+05 
3.32E+05 2.52E+05 1.32E+05 
3.83E+05 3.75E+05 1.88E+05 
5.74E+05 4.21E+05 2.50E+05 
4.45E+05 4.67E+05 2.17E+05 
4.95E+05 3.80E+05 1.97E+05 
4.33E+05 2.20E+05 1.15E+05 
3.04E+05 1.83E+05 1.12E+05 
1.97E+05 1.14E+05 6.46E+04 
8.44E+04 6.86E+04 2.94E+04 
5.63E+04 4.57E+04 1.18E+04 
3.38E+04 3.66E+04 1.47E+04 
2.25E+04 2.29E+04 8.81E+03 
5.63E+03 3.20E+04 8.81E+03 
5.63E+03 2.29E+04 5.88E+03 
1.13E+04 1.83E+04 1.18E+04 
1.69E+04 4.57E+03 O.OOE+OO 
5.63E+03 1.83E+04 2.94E+03 
O.OOE+OO O.OOE+OO 2.94E+03 
O.OOE+OO O.OOE+OO 8.81E+03 
O.OOE+OO O.OOE+OO 5.88E+03 
O.OOE+OO O.OOE+OO 5.88E+03 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
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04/21/88 
Time > 

homog 0 min 1 min 3 min 5 min 10 min 
-5 0 1 3 5 10 

. dia. 

0.87 6.36E+05 3.03E+05 3.29E+05 2.58E+05 2.93E+05 1.72E+05 
1.04 7.20E+05 3.18E+05 3.04E+05 2.36E+05 1.57E+05 1.37E+05 
1.24 8.43E+05 2.48E+05 3.87E+05 2.81E+05 3.22E+05 2.25E+05 
1.48 9.96E+05 4.50E+05 4.29E+05 3.82E+05 2.81E+05 2.29E+05 
1.77 1.15E+06 4.50E+05 4.16E+05 4.21E+05 2.69E+05 2.29E+05 
2.11 1.13E+06 4.14E+05 4.58E+05 3.42E+05 2.25E+05 2.47E+05 
2.51 6.59E+05 3.84E+05 3.54E+05 3.59E+05 2.21E+05 2.07E+05 
3.00 3.98E+05 3.38E+05 2.75E+05 2.69E+05 1.77E+05 1.41E+05 
3.58 2.07E+05 1.87E+05 1.29E+05 1.46E+05 8.84E+04 1.19E+05 
4.27 6.89E+04 1.82E+05 7.50E+04 1.40E+05 7.64E+04 1.28E+05 
5.10 3.83E+04 1.41E+05 6.25E+04 7.86E+04 3.62E+04 8.38E+04 
6.08 7.66E+03 5.56E+04 2.50E+04 3.37E+04 4.02E+04 3.09E+04 
7.26 1.53E+04 2.53E+04 8.33E+03 2.24E+04 3.22E+04 2.21E+04 
8.66 7.66E+03 2.02E+04 1.25E+04 O.OOE+OO 1.21E+04 3.09E+04 
10.33 7.66E+03 1.52E+04 4.16E+03 5.61E+03 1.21E+04 2.21E+04 
12.33 7.66E+03 O.OOE+OO O.OOE+OO O.OOE+OO 1.61E+04 1.77E+04 
14.71 7.66E+03 5.05E+03 O.OOE+OO O.OOE+OO O.OOE+OO 2.21E+04 
17.55 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
20.94 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
24.98 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
29.81 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 4.41E+03 
35.56 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
42.43 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
50.63 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
86.00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
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15 min 20 min 
15 20 

dla. 

0.87 2.13E+05 1.52E+05 
1.04 1.16E+05 l.lOE+05 
1.24 1.38E+05 1.52E+05 
1.48 2.05E+05 2.21E+05 
1.77 1.53E+05 1.45E+05 
2.11 1.64E+05 1.69E+05 
2.51 1.49E+05 l.lOE+05 
3.00 1.12E+05 8.63E+04 
3.58 8.59E+04 6.91E+04 
4.27 6.35E+04 4.49E+04 
5.10 3.74E+04 5.18E+04 
6.08 2.61E+04 2.42E+04 
7.26 2.99E+04 3.45E+03 
8.66 2.99E+04 1.73E+04 

10.33 1.49E+04 1.73E+04 
12.33 2.24E+04 6.91E+03 
14.71 1.12E+04 3.45E+03 
17.55 1.12E+04 3.45E+03 
20.94 3.74E+03 3.45E+03 
24.98 1.12E+04 3.45E+03 
29.81 O.OOE+OO O.OOE+OO 
35.56 O.OOE+OO 6.91E+03 
42.43 3.74E+03 O.OOE+OO 
50.63 O.OOE+OO 3.45E+03 
60.41 O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO 
86.00 O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO 

25 min 30 min 45 min 
25 30 45 

1.16E+05 7.85E+04 7.20E+04 
8.99E+04 6.54E+04 4.73E+04 
1.03E+05 8.18E+04 4.94E+04 
1.22E+05 1.14E+05 7.20E+04 
6.42E+04 7.85E+04 8.44E+04 
1.12E+05 5.89E+04 4.94E+04 
6.74E+04 4.91E+04 4.32E+04 
7.06E+04 4.58E+04 2.68E+04 
4.49E+04 4.25E+04 1.03E+04 
3.21E+04 1.96E+04 1.03E+04 
1.93E+04 3.27E+04 8.23E+03 
9.63E+03 6.54E+03 1.44E+04 
6.42E+03 O.OOE+OO 4.12E+03 
9.63E+03 3.27E+03 2.06E+03 
6.42E+03 6.54E+03 2.06E+03 
9.63E+03 O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
3.21E+03 6.54E+03 4.12E+03 
3.21E+03 3.27E+03 O.OOE+OO 
O.OOE+OO O.OOE+OO 2.06E+03 
9.63E+03 O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO 2.06E+03 
3.21E+03 9.81E+03 O.OOE+OO 
3.21E+03 O.OOE+OO 2.06E+03 
3.21E+03 O.OOE+OO O.OOE+OO 
6.42E+03 O.OOE+OO 2.06E+03 
O.OOE+OO 6.54E+03 2.06E+03 
O.OOE+OO 3.27E+03 O.OOE+OO 
O.OOE+OO O.OOE+OO 2.06E+03 
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04/19/88 
Time > 

homog 0 min 1 min 3 min 5 min 10 min 
-5 0 1 3 5 10 

dla. 

0.87 6.96E+05 3.64E+05 2.74E+05 3.03E+05 1.25E+05 2.29E+05 
1.04 6.63E+05 3.23E+05 2.42E+05 2.49E+05 1.61E+05 2.47E+05 
1.24 7.88E+05 5.46E+05 3.81E+05 3.33E+05 3.05E+05 2.96E+05 
1.48 9.59E+05 5.96E+05 4.14E+05 3.93E+05 3.90E+05 3.13E+05 
1.77 7.88E+05 5.15E+05 4.19E+05 4.23E+05 3.01E+05 3.22E+05 
2.11 8.99E+05 5.20E+05 3.55E+05 3.78E+05 3.82E+05 3.49E+05 
2.51 6.43E+05 4.34E+05 4.19E+05 3.78E+05 3.50E+05 1.99E+05 
3.00 2.69E+05 2.73E+05 2.10E+05 2.49E+05 2.69E+05 2.65E+05 
3.58 8.53E+04 1.72E+05 1.61E+05 1.99E+05 1.41E+05 1.28E+05 
4.27 5.25E+04 1.16E+05 1.13E+05 1.14E+05 1.73E+05 l.OlE+05 
5.10 1.31E+04 3.03E+04 5.37E+04 5.47E+04 1.41E+05 3.53E+04 
6.08 1.31E+04 1.52E+04 3.22E+04 4.47E+04 7.64E+04 2.21E+04 
7.26 O.OOE+OO 5.05E+03 1.61E+04 1.49E+04 5.23E+04 3.09E+04 
8.66 O.OOE+OO O.OOE+OO 2.15E+04 4.97E+03 2.01E+04 2.21E+04 
10.33 O.OOE+OO O.OOE+OO 1.61E+04 4.97E+03 2.41E+04 2.21E+04 
12.33 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 8.04E+03 O.OOE+OO 
14.71 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 4.02E+03 4.41E+03 
17.55 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 8.04E+03 4.41E+03 
20.94 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 4.02E+03 O.OOE+OO 
24.98 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
29.81 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
35.56 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
42.43 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
50.63 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
86.00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
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15 min 20 min 25 min 30 min 45 min 
15 20 25 30 45 

dia. 

0.87 1.94E+05 1.88E+05 
1.04 1.50E+05 l.OlE+05 
1.24 1.81E+05 2.17E+05 
1.48 2.82E+05 1.74E+05 
1.77 2.16E+05 2.66E+05 
2.11 2.96E+05 1.88E+05 
2.51 2.56E+05 1.59E+05 
3.00 1.50E+05 1.21E+05 
3.58 6.62E+04 l.OlE+05 
4.27 7.50E+04 5.31E+04 
5.10 5.30E+04 3.38E+04 
6.08 2.21E+04 1.93E+04 
7.26 4.41E+03 4.83E+03 
8.66 4.41E+03 O.OOE+00 
10.33 8.83E+03 9.66E+03 
12.33 8.83E+03 O.OOE+00 
14.71 4.41E+03 4.83E+03 
17.55 O.OOE+00 4.83E+03 
20.94 4.41E+03 9.66E+03 
24.98 4.41E+03 4.83E+03 
29.81 O.OOE+00 O.OOE+00 
35.56 4.41E+03 O.OOE+00 
42.43 O.OOE+00 O.OOE+00 
50.63 O.OOE+00 4.83E+03 
60.41 O.OOE+00 O.OOE+00 
72.08 O.OOE+00 4.83E+03 
86.00 O.OOE+00 O.OOE+00 
102.62 O.OOE+00 O.OOE+00 
122.44 O.OOE+00 O.OOE+00 

.17E+05 1.41E+05 7.62E+04 

.05E+05 9.81E+04 6.59E+04 

.29E+05 1.80E+05 6.59E+04 

.26E+05 1.54E+05 1.07E+05 

.20E+05 1.83E+05 7.20E+04 

.02E+05 1.18E+05 5.35E+04 

.59E+04 7.85E+04 4.73E+04 

.49E+04 6.21E+04 2.88E+04 

.70E+04 4.58E+04 8.23E+03 

.79E+04 1.64E+04 1.23E+04 

.40E+04 1.31E+04 6.17E+03 

.20E+04 &.54E+03 8.23E+03 

.20E+04 1.31E+04 2.06E+03 

.99E+03 6.54E+03 4.12E+03 

.OOE+03 O.OOE+00 O.OOE+00 

.OOE+00 O.OOE+00 O.OOE+00 

.OOE+00 O.OOE+00 O.OOE+OO 

.99E+03 O.OOE+OO O.OOE+OO 

.OOE+00 3.27E+03 O.OOE+OO 

.OOE+OO O.OOE+OO O.OOE+OO 

.O0E+03 O.OOE+OO O.OOE+OO 

.00E+03 6.54E+03 O.OOE+OO 

.00E+03 3.27E+03 2.06E+03 

.99E+03 O.OOE+OO O.OOE+OO 
,OOE+OO 3.27E+03 4.12E+03 
,OOE+OO O.OOE+OO 2.06E+03 
.OOE+03 O.OOE+OO O.OOE+OO 
.OOE+OO O.OOE+OO O.OOE+OO 
,OOE+OO 6.57E+03 O.OOE+OO 

1 
1 
1 
1 
1 
1 
9 
7 
2 
4 
2 
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15 min 20 min 
15 20 

dia. 

0.87 3.40E+05 2.04E+05 
1.04 2.96E+05 1.77E+05 
1.24 3.13E+05 4.13E+05 
1.48 4.15E+05 3.92E+05 
1.77 3.67E+05 3.97E+05 
2.11 4.04E+05 3.81E+05 
2.51 2.86E+05 3.33E+05 
3.00 2.75E+05 2.04E+05 
3.58 1.08E+05 1.13E+05 
4.27 1.46E+05 6.97E+04 
5.10 7.01E+04 4.83E+04 
6.08 2.16E+04 2.15E+04 
7.26 2.69E+04 2.15E+04 
8.66 2.16E+04 1.07E+04 
10.33 1.08E+04 1.07E+04 
12.33 5.39E+03 2.15E+04 
14.71 5.39E+03 O.OOE+OO 
17.55 O.OOE+OO 5.36E+03 
20.94 O.OOE+OO 5.36E+03 
24.98 O.OOE+OO O.OOE+OO 
29.81 O.OOE+OO O.OOE+OO 
35.56 O.OOE+OO 5.36E+03 
42.43 O.OOE+OO O.OOE+OO 
50.63 O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO 
86.00 O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO 

25 min 30 min 45 min 
25 30 45 

9.97E+04 1.25E+05 8.23E+04 
6.98E+04 1.46E+05 1.02E+05 
2.89E+05 1.58E+05 1.86E+05 
2.69E+05 1.91E+05 2.23E+05 
2.04E+05 2.66E+05 1.33E+05 
2.44E+05 1.91E+05 1.40E+05 
2.74E+05 2.16E+05 7.50E+04 
1.60E+05 1.12E+05 8.23E+04 
9.47E+04 5.82E+04 3.39E+04 
4.99E+04 4.99E+04 2.42E+04 
3.49E+04 3.74E+04 7.26E+03 
3.49E+04 2.50E+04 7.26E+03 
1.50E+04 4.16E+03 9.68E+03 
1.99E+04 8.32E+03 O.OOE+OO 
4.99E+03 8.32E+03 O.OOE+OO 
9.97E+03 4.16E+03 4.84E+03 
4.99E+03 1.25E+04 2.42E+03 
4.99E+03 O.OOE+OO 2.42E+03 
O.OOE+OO 4.16E+03 2.42E+03 
O.OOE+OO 8.32E+03 4.84E+03 
4.99E+03 4.16E+03 2.42E+03 
O.OOE+OO 4.16E+03 O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO 4.16E+03 4.84E+03 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO 2.42E+03 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
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02/05/88 
Time > 

homog 0 min 1 min 3 min 5 min 10 min 
-5 0 1 3 5 10 

dia. 

0.87 4.71E+05 5.25E+05 3.67E+05 4.55E+05 3.07E+05 3.15E+05 
1.04 4.71E+05 4.28E+05 3.57E+05 3.54E+05 4.33E+05 3.32E+05 
1.24 7.12E+05 6.50E+05 4.70E+05 5.00E+05 3.58E+05 4.87E+05 
1.48 8.73E+05 7.41E+05 5.88E+05 7.41E+05 5.95E+05 6.64E+05 
1.77 7.58E+05 8.38E+05 4.70E+05 6.62E+05 5.09E+05 5.59E+05 
2.11 6.09E+05 6.22E+05 6.35E+05 5.50E+05 4.54E+05 4.81E+05 
2.51 4.08E+05 5.30E+05 4.23E+05 4.49E+05 3.73E+05 4.92E+05 
3.00 2.93E+05 2.97E+05 2.40E+05 2.47E+05 2.22E+05 2.77E+05 
3.58 1.67E+05 9.69E+04 1.55E+05 1.57E+05 1.51E+05 1.72E+05 
4.27 8.04E+04 8.55E+04 7.99E+04 5.61E+04 8.57E+04 l.llE+05 
5.10 5.17E+04 1.71E+04 3.76E+04 3.37E+04 4.03E+04 4.43E+04 
6.08 1.15E+04 1.14E+04 2.82E+04 2.24E+04 2.52E+04 1.66E+04 
7.26 O.OOE+OO O.OOE+OO 4.70E+03 5.61E+03 O.OOE+OO l.llE+04 
8.66 5.74E+03 5.70E+03 O.OOE+OO O.OOE+OO O.OOE+OO l.llE+04 
10.33 O.OOE+OO 5.70E+03 4.70E+03 5.61E+03 5.04E+03 5.53E+03 
12.33 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO l.llE+04 
14.71 O.OOE+OO O.OOE+OO O.OOE+OO 5.61E+03 O.OOE+OO O.OOE+OO 
17.55 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 5.53E+03 
20.94 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
24.98 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
29.81 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
35.56 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
42.43 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
50.63 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
86.00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
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15 min 20 min 25 min 30 min 45 min 
15 20 25 30 45 

dia. 

0.87 2.91E+05 1.84E+05 1.55E+05 8.74E+04 7.93E+04 
1.04 2.29E+05 1.41E+05 1.35E+05 1.25E+05 6.17E+04 
1.24 3.49E+05 2.68E+05 2.61E+05 1.66E+05 1.62E+05 
1.48 4.72E+05 3.91E+05 2.65E+05 2.37E+05 1.44E+05 
1.77 3.93E+05 2.64E+05 2.73E+05 2.16E+05 1.53E+05 
2.11 4.32E+05 3.47E+05 3.06E+05 2.00E+05 1.53E+05 
2.51 3.57E+05 2.24E+05 1.88E+05 1.66E+05 6.46E+04 
3.00 2.03E+05 2.33E+05 1.31E+05 1.21E+05 6.17E+04 
3.58 l.lOE+05 1.14E+05 4.90E+04 3.74E+04 3.23E+04 
4.27 6.62E+04 7.47E+04 2.86E+04 3.74E+04 1.76E+04 
5.10 8.38E+04 5.71E+04 2.45E+04 3.33E+04 8.81E+03 
6.08 4.85E+04 2.64E+04 8.16E+03 8.32E+03 1.18E+04 
7.26 1.32E+04 1.76E+04 1.22E+04 2.50E+04 5.88E+03 
8.66 1.32E+04 4.39E+03 8.16E+03 8.32E+03 1.76E+04 
10.33 O.OOE+00 2.20E+04 O.OOE+00 4.16E+03 2.94E+03 
12.33 4.41E+03 4.39E+03 2.04E+04 8.32E+03 2.94E+03 
14,71 4.41E+03 O.OOE+00 4.08E+03 8.32E+03 5.88E+03 
17.55 O.OOE+00 O.OOE+00 1.63E+04 1.25E+04 O.OOE+00 
20.94 4.41E+03 8.78E+03 8.16E+03 O.OOE+00 5.88E+03 
24.98 O.OOE+00 O.OOE+00 4.08E+03 4.16E+03 8.81E+03 
29.81 O.OOE+00 O.OOE+00 4.08E+03 O.OOE+OO 8.81E+03 
35.56 O.OOE+00 O.OOE+OO O.OOE+00 4.16E+03 O.OOE+00 
42.43 O.OOE+OO O.OOE+OO O.OOE+OO 1.25E+04 O.OOE+OO 
50.63 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 2.94E+03 
72.08 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
86.00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
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02/09/88 
Time > 

homog 0 min 1 min 3 min 5 min 10 min 
- 5  0 1 3 5 10 

dia. 

0.87 7.18E+05 3.59E+05 3.29E+05 3.28E+05 3.04E+05 2.13E+05 
1.04 6.38E+05 4.85E+05 4.32E+05 3.98E+05 2.05E+05 1.89E+05 
1.24 7.98E+05 5.93E+05 4.42E+05 5.07E+05 4.64E+05 3.77E+05 
1.48 1.24E+06 8.61E+05 6.06E+05 5.37E+05 4.11E+05 4.29E+05 
1.77 8.10E+05 •6.79E+05 5.73E+05 5.17E+05 4.11E+05 3.21E+05 
2.11 6.95E+05 6.79E+05 5.73E+05 4.62E+05 3.80E+05 2.93E+05 
2.51 3.56E+05 4.16E+05 3.62E+05 4.08E+05 3.17E+05 2.73E+05 
3.00 1.90E+05 2.57E+05 2.82E+05 2.88E+05 1.83E+05 2.01E+05 
3.58 7.47E+04 1.60E+05•1.13E+05 1.49E+05.1.12E+05 9.23E+04 
4.27 5.17E+04 3.99E+04 4.23E+04 3.98E+04 3.57E+04 6.02E+04 
5.10 3.45E+04 1.14E+04 1.41E+04 4.97E+04 4.46E+03 4.82E+04 
6.08 1.72E+04 O.OOE+OO O.OOE+OO 4.97E+03 2.23E+04 3.61E+04 
7.26 O.OOE+OO 5.70E+03 O.OOE+OO 9.94E+03 O.OOE+OO 3.21E+04 
8.66 5.74E+03 5.70E+03 O.OOE+OO 9.94E+03 4.46E+03 1.20E+04 
10.33 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 4.46E+03 8.03E+03 
12.33 O.OOE+OO O.OOE+OO O.OOE+OO 4.97E+03 O.OOE+OO 4.01E+03 
14.71 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 4.46E+03 4.01E+03 
17.55 5.74E+03 2.28E+04 O.OOE+OO 4.97E+03 8.93E+03 8.03E+03 
20.94 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 4.01E+03 
24.98 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 4.01E+03 
29.81 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
35.56 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
42.43 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
50.63 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
86.00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
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15 min 20 min 
15 20 

dla. 

0.87 1.72E+05 9.66E+04 
1.04 1.19E+05 1.19E+05 
1.24 2.29E+05 1.58E+05 
1.48 3.35E+05 1.58E+05 
1.77 2.74E+05 1.80E+05 
2.11 1.94E+05 1.58E+05 
2.51 1.94E+05 1.36E+05 
3,00 1.24E+05 7.47E+04 
3.58 9.27E+04 5.27E+04 
4.27 1.15E+05 2.20E+04 
5.10 4.41E+04 6.59E+04 
6.08 5.30E+04 2.64E+04 
7.26 3.09E+04 8.78E+03 
8.66 2.21E+04 8.78E+03 
10.33 1.77E+04 1.76E+04 
12.33 1.77E+04 O.OOE+OO 
14.71 O.OOE+OO O.OOE+OO 
17.55 8.83E+03 4.39E+03 
20.94 O.OOE+OO 1.32E+04 
24.98 O.OOE+OO O.OOE+OO 
29.81 O.OOE+OO O.OOE+OO 
35.56 O.OOE+OO O.OOE+OO 
42.43 O.OOE+OO O.OOE+OO 
50.63 O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO 
86.00 O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO 

25 min 30 min 45 min 
25 30 45 

2.07E+04 3.60E+04 3.72E+04 
4.49E+04 2.62E+04 4.12E+04 
l.llE+05 1.21E+05 5.49E+04 
1.07E+05 1.14E+05 8.63E+04 
7.95E+04 7.52E+04 6.86E+04 
•9.33E+04 l.llE+05 6.86E+04 
l.OOE+05 6.21E+04 4.90E+04 
5.87E+04 4.25E.+04 2.94E+04 
3.80E+04 3.27E+04 1.57E+04 
6.91E+03 1.64E+04 7.84E+03 
1.38E+04 1.64E+04 5.88E+03 
1.38E+04 9.81E+03 3.92E+03 
6.91E+03 1.96E+04 O.OOE+OO 
3.46E+03 9.81E+03 3.92E+03 
1.38E+04 1.96E+04 5.88E+03 
6.91E+03 6.54E+03 O.OOE+OO 
6.91E+03 O.OOE+OO O.OOE+OO 
1.73E+04 1.96E+04 5.88E+03 
3.46E+03 1.31E+04 1.96E+03 
6.91E+03 6.54E+03 1.96E+03 
3.46E+03 3.27E+03 1.96E+03 
3.46E+03 3.27E+03 3.92E+03 
O.OOE+OO 3.27E+03 1.96E+03 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO 3.27E+03 O.OOE+OO 
O.OOE+OO 3.27E+03 1.96E+03 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
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10/22/87 
Time > 

homog 
-1 

0 min 
0 

1 min 
1 

3 min 
3 

5 min 10 min 
5 10 

dla. 

0.87 7.35E+05 5.31E+05 4.89E+05 6.85E+05 4.13E+05 4.57E+05 
1.04 7.35E+05 5.61E+05 5.92E+05 4.60E+05 4.74E+05 3.47E+05 
1.24 7.01E+05 6.68E+05 4.70E+05 5.16E+05 5.34E+05 4.13E+05 
1.48 9.65E+05 1.02E+06 7.33E+05 6.51E+05 7.66E+05 4.65E+05 
1.77 8.04E+05 7.59E+05 6.67E+05 7.75E+05 4.84E+05 4.80E+05 
2.11 8.16E+05 9.71E+05 5.55E+05 5.61E+05 4.74E+05 3.47E+05 
2.51 4.14E+05 6.98E+05 5.55E+05 5.95E+05 5.75E+05 2.88E+05 
3.00 3.91E+05 4.40E+05 3.20E+05 3.82E+05 3.33E+05 2.73E+05 
3.58 1.15E+05 3.19E+05 2.16E+05 2.69E+05 2.02E+05 1.55E+05 
4.27 4.60E+04 1.52E+05 1.22E+05 1.68E+05 7.06E+04 1.25E+05 
5.10 4.60E+04 9.11E+04 7.52E+04 7.86E+04 6.05E+04 3.69E+04 
6.08 2.30E+04 1.52E+04 2.82E+04 3.37E+04 5.04E+04 2.95E+04 
7.26 O.OOE+OO 1.52E+04 3.76E+04 6.73E+04 2.02E+04 7.38E+03 
8.66 O.OOE+OO O.OOE+OO O.OOE+OO 2.24E+04 2.02E+04 3.69E+04 
10.33 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO l.OlE+04 7.38E+03 
12.33 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 7.38E+03. 
14.71 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 1.48E+04 
17.55 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
20.94 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
24.98 O.OOE+OO O.OOE+OO O.OOE+OO 1.12E+04 O.OOE+OO O.OOE+OO 
29.81 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
35.56 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
42.43 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
50.63 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
86.00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
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452 

15 min 20 min 25 min 30 min 
15 20 25 30 

dia. 

0.87 3.76E+05 1.88E+05 1.68E+05 1.18E+05 
1.04 2.71E+05 1.23E+05 1.68E+05 1.30E+05 
1.24 3.62E+05 1.72E+05 1.80E+05 1.49E+05 
1.48 4.45E+05 2.58E+05 1.68E+05 2.02E+05 
1.77 4.03E+05 2.52E+05 1.50E+05 1.22E+05 
2.11 3.13E+05 2.25E+05 1.27E+05 1.07E+05 
2.51 2.29E+05 1.77E+05 9.36E+04 1.03E+05 
3.00 1.39E+05 1.29E+05 7.86E+04 6.10E+04 
3.58 1.74E+05 6.97E+04 4.49E+04 2.67E+04 
4.27 9.74E+04 4.83E+04 3.74E+04 2.29E+04 
5.10 4.17E+04 1.61E+04 1.87E+04 1.14E+04 
6.08 2.09E+04 1.07E+04 O.OOE+OO 1.14E+04 
7.26 6.95E+03 1.07E+04 1.12E+04 3.81E+03 
8.66 4.87E+04 1.07E+04 1.12E+04 7.63E+03 
10.33 2.09E+04 1.07E+04 3.74E+03 7.63E+03 
12.33 6.95E+03 O.OOE+OO 3.74E+03 O.OOE+OO 
14.71 6.95E+03 1.07E+04 3.74E+03 3.81E+03 
17.55 1.39E+04 5.36E+03 O.OOE+OO 3.81E+03 
20.94 6.95E+03 5.36E+03 O.OOE+OO 3.81E+03 
24.98 6.95E+03 O.OOE+OO O.OOE+OO O.OOE+OO 
29.81 6.95E+03 O.OOE+OO 3.74E+03 3.81E+03 
35.56 6.95E+03 5.36E+03 O.OOE+OO O.OOE+OO 
42.43 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
50.63 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
86.00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
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453 

11/03/87 
Time > 

homog 
-1 

0 min 
0 

1 min 
1 

3 min 
3 

5 min 
5 

dia. 

0.87 6.51E+05 3.02E+05 3.82E+05 4.07E+05 3.29E+05 
1.04 6.64E+05 3.64E+05 3.49E+05 4.03E+05 2.70E+05 
1.24 7.24E+05 4.59E+05 4.31E+05 4.88E+05 4.97E+05 
1.48 8.98E+05 6.33E+05 5.92E+05 6.02E+05 6.03E+05 
1.77 8.25E+05 5.87E+05 5.85E+05 5.49E+05 4.24E+05 
2.11 7.65E+05 5.83E+05 4.46E+05 5.01E+05 4.24E+05 
2.51 4.12E+05 4.38E+05 3.22E+05 4.11E+05 2.67E+05 
3.00 1.92E+05 2.48E+05 2.55E+05 2.56E+05 1.68E+05 
3.58 l.lOE+05 1.57E+05 1.65E+05 l.lOE+05 6.58E+04 
4.27 4.12E+04 6.62E+04 5.62E+04 9.77E+04 7.31E+04 
5.10 1.37E+04 4.14E+04 4.87E+04 6.11E+04 2.19E+04 
6.08 1.83E+04 3.31E+04 1.87E+04 3.26E+04 1.83E+04 
7.26 1.37E+04 2.48E+04 1.87E+04 2.04E+04 2.19E+04 
8.66 O.OOE+OO O.OOE+OO 7.50E+03 2.04E+04 l.lOE+04 
10.33 4.58E+03 4.14E+03 3.75E+03 O.OOE+OO 7.31E+03 
12.33 O.OOE+OO 4.14E+03 O.OOE+OO O.OOE+OO O.OOE+OO 
14,71 O.OOE+OO 4.14E+03 O.OOE+OO O.OOE+OO 1.46E+04 
17.55 O.OOE+OO O.OOE+OO O.OOE+OO 4.07E+03 3.66E+03 
20.94 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
24.98 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
29.81 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
35.56 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
42.43 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
50.63 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
86.00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
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454 

15 min 20 min 25 min 30 min 
15 20 25 30 

dla. 

0.87 2.22E+05 1.65E+05 1.48E+05 1.27E+05 
1.04 2.19E+05 1.51E+05 l.llE+05 l.lOE+05 
1.24 2.52E+05 1.91E+05 1.22E+05 1.16E+05 
1.48 3.16E+05 2.25E+05 1.43E+05 1.94E+05 
1.77 2.67E+05 2.19E+05 1.30E+05 1.43E+05 
2.11 2.49E+05 2.02E+05 l.OOE+05 1.08E+05 
2.51 1.85E+05 l.llE+05 9.52E+04 7.01E+04 
3.00 1.09E+05 9.96E+04 8.46E+04 4.85E+04 
3.58 5.47E+04 5.12E+04 4.49E+04 4.31E+04 
4.27 6.98E+04 2.28E+04 3.70E+04 1.89E+04 
5.10 3.34E+04 2.28E+04 2.12E+04 1.62E+04 
6.08 3.04E+04 1.99E+04 1.32E+04 8.08E+03 
7.26 1.21E+04 1.14E+04 7.93E+03 O.OOE+00 
8.66 3.64E+04 1.14E+04 1.06E+04 5.39E+03 
10.33 1.21E+04 5.69E+03 O.OOE+00 2.69E+03 
12.33 6.07E+03 8.53E+03 5.29E+03 2.69E+03 
14.71 6.07E+03 O.OOE+QO 2.64E+03 5.39E+03 
17.55 3.04E+03 2.84E+03 2.64E+03 5.39E+03 
20.94 6.07E+03 2.84E+03 2.64E+03 O.OOE+00 
24.98 3.04E+03 8.53E+03 O.OOE+00 O.OOE+00 
29.81 6.07E+03 O.OOE+00 2.64E+03 O.OOE+00 
35.56 3.04E+03 2.84E+03 2.64E+03 O.OOE+00 
42.43 O.OOE+00 8.53E+03 5.29E+03 O.OOE+00 
50.63 O.OOE+00 O.OOE+00 7.93E+03 O.OOE+00 
60.41 O.OOE+00 O.OOE+00 O.OOE+00 2.69E+03 
72.08 O.OOE+00 O.OOE+00 O.OOE+00 5.39E+03 
86.00 O.OOE+00 O.OOE+00 2.64E+03 2.69E+03 
102.62 O.OOE+00 O.OOE+00 O.OOE+00 O.OOE+00 
122.44 O.OOE+00 O.OOE+00 O.OOE+00 O.OOE+00 
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455 

10/24/87 
Time-

homog 0 min 1 min 3 min 5 min 10 min 
-1 0 1 3 5 10 

dia. 

0.87 8.79E+05 7.48E+05 6.02E+05 6.17E+05 5.44E+05 5.00E+05 
1.04 8.39E+05 8.03E+05 5.64E+05 5.28E+05 4.97E+05 4.62E+05 
1.24 9.71E+05 9.04E+05 7.65E+05 5.84E+05 4.91E+05 4.68E+05 
1.48 1.09E+06 1.24E+06 9.03E+05 9.88E+05 6.05E+05 8.16E+05 
1.77 8.67E+05 8.89E+05 8.15E+05 8.19E+05 5.98E+05 6.07E+05 
2.11 8.21E+05 9.65E+05 8.02E+05 6.73E+05 6.18E+05 6.45E+05 
2.51 4.65E+05 6.06E+05 5.33E+05 4.49E+05 5.71E+05 4.74E+05 
3.00 2.47E+05 2.37E+05 3.01E+05 5.16E+05 5.04E+05 2.09E+05 
3.58 1.21E+05 1.16E+05 1.69E+05 3.37E+05 3.90E+05 1.26E+05 
4.27 1.15E+04 6.57E+04 5.01E+04 1.80E+05 2.82E+05 1.07E+05 
5.10 4.02E+04 3.03E+04 2.51E+04 5.61E+04 1.34E+05 6.96E+04 
6.08 1.15E+04 O.OOE+OO 1.88E+04 2.24E+04 8.06E+04 1.90E+04 
7.26 5.74E+03 5.05E+03 O.OOE+OO 3.37E+04 2.69E+04 6.32E+03 
8.66 5.74E+03 O.OOE+OO 6.27E+03 1.12E+04 2.02E+04 1.26E+04 
10.33 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 6.72E+03 O.OOE+OO 
12.33 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
14.71 O.OOE+OO O.OOE+OO O.OOE+OO 1.12E+04 O.OOE+OO O.OOE+OO 
17.55 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
20.94 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 3.36E+04 O.OOE+OO 
24.98 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
29.81 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
35.56 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
42.43 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
50.63 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
86.00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
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456 

15 min 20 min 25 min 30 min 
15 20 25 30 

dla. 

0.87 4.62E+05 2.42E+05 2.08E+05 1.47E+05 
1.04 4.56E+05 2.60E+05 2.00E+05 1.44E+05 
1.24 5.42E+05 2.79E+05 2.16E+05 1.44E+05 
1.48 6.15E+05 4.06E+05 2.53E+05 1.86E+05 
1.77 5.48E+05 3.82E+05 1.96E+05 1.73E+05 
2.11 4.44E+05 3.88E+05 1.22E+05 1.50E+05 
2.51 3.83E+05 2.91E+05 1.06E+05 1.14E+05 
3.00 2.43E+05 9.08E+04 1.18E+05 7.19E+04 
3.58 7.91E+04 6.06E+04 5.31E+04 5.23E+04 
4.27 7.91E+04 2.42E+04 3.27E+04 3.60E+04 
5.10 9.13E+04 2.42E+04 2.45E+04 9.81E+03 
6.08 9.74E+04 3.63E+04 8.16E+03 1.31E+04 
7.26 4.87E+04 O.OOE+OO 4.08E+03 9.81E+03 
8.66 1.83E+04 1.82E+04 1.22E+04 1.31E+04 
10.33 3.04E+04 6.06E+03 4.08E+03 6.54E+03 
12.33 3.65E+04 6.06E+03 O.OOE+OO O.OOE+OO 
14.71 1.22E+04 1.82E+04 O.OOE+OO 3.27E+03 
17.55 O.OOE+OO 1.21E+04 O.OOE+OO 6.54E+03 
20.94 1.22E+04 O.OOE+OO 4.08E+03 3.27E+03 
24.98 O.OOE+OO O.OOE+OO O.OOE+OO 3.27E+03 
29.81 O.OOE+OO 6.06E+03 4.08E+03 O.OOE+OO 
35.56 O.OOE+OO 6.06E+03 O.OOE+OO O.OOE+OO 
42.43 O.OOE+OO O.OOE+OO O.OOE+OO 3.27E+03 
50.63 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO O.OOE+OO O.OOE+OO 3.27E+03 
72.08 O.OOE+OO O.OOE+OO 4.08E+03 3.27E+03 
86.00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
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457 

11/05/87 
Time > 

homog 
-1 

0 mln 
0 

1 mln 
1 

3 mln 
3 

5 mln 
5 

dla. 

0.87 5.67E+05 4.51E+05 4.81E+05 3.78E+05 2.79E+05 
1.04 4.92E+05 4.47E+05 4.34E+05 3.78E+05 2.66E+05 
1.24 6.96E+05 5.17E+05 5.03E+05 4.96E+05 3.03E+05 
1.48 9.33E+05 7.36E+05 7.91E+05 5.50E+05 3.89E+05 
1.77 7.33E+05 6.62E+05 6.41E+05 5.47E+05 3.19E+05 
2.11 6.79E+05 6.12E+05 5.84E+05 5.18E+05 3.11E+05 
2.51 3.79E+05 4.51E+05 3.91E+05 4.70E+05 2.20E+05 
3.00 3.00E+05 2.81E+05 2.72E+05 2.53E+05 1.90E+05 
3.58 9.17E+04 1.28E+05 1.66E+05 1.79E+05 1.48E+05 
4.27 5.42E+04 1.03E+05 8.44E+04 1.15E+05 6.97E+04 
5.10 2.50E+04 5.38E+04 2.19E+04 5.44E+04 4.02E+04 
6.08 1.67E+04 3.31E+04 1.25E+04 3.52E+04 1.88E+04 
7.26 1.25E+04 O.OOE+OO 3.13E+03 1.92E+04 2.15E+04 
8.66 O.OOE+OO 8.27E+03 9.38E+03 9.60E+03 2.15E+04 
10.33 O.OOE+OO 4.14E+03 9.38E+03 6.40E+03 1.88E+04 
12.33 O.OOE+OO O.OOE+OO O.OOE+OO 6.40E+03 1.34E+04 
14.71 O.OOE+OO O.OOE+OO 3.13E+03 3.20E+03 1.07E+04 
17.55 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 5.37E+03 
20.94 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
24.98 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
29.81 O.OOE+OO O.OOE+OO O.OOE+OO 3.20E+03 O.OOE+OO 
35.56 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
42.43 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
50.63 O.OOE+OO 0:00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
86.00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
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458 

15 min 20 min 25 min 30 min 
15 20 25 30 

dla. 

0.87 1.31E+05 1.05E+05 6.07E+04 6.26E+04 
1.04 9.96E+04 7.52É+04 5.84E+04 7.78E+04 
1.24 2.04E+05 1.07E+05 6.97E+04 8.24E+04 
1.48 2.04E+05 l.lOE+05 9.44E+04 9.92E+04 
1.77 1.65E+05 6.72E+04 7.19E+04 7.63E+04 
2.11 1.31E+05 9.40E+04 4.72E+04 3.66E+04 
2.51 1.34E+05 6.18E+04 2.70E+04 5.19E+04 
3.00 7.78E+04 4.03E+04 2.25E+04 1.98E+04 
3.58 4.37E+04 4.03E+04 2.25E+04 1.83E+04 
4.27 1.22E+04 2.15E+04 8.99E+03 9.16E+03 
5.10 1.70E+04 2.69E+03 6.74E+03 1.22E+04 
6.08 1.22E+04 2.69E+03 O.OOE+00 3.05E+03 
7.26 7.29E+03 8.06E+03 2.25E+03 1.53E+03 
8.66 2.43E+03 O.OOE+00 O.OOE+00 1.53E+03 
10.33 4.86E+03 5.37E+03 O.OOE+00 O.OOE+00 
12.33 2.43E+03 2.69E+03 O.OOE+00 O.OOE+00 
14.71 2.43E+03 2.69E+03 2.25E+03 O.OOE+00 
17.55 4.86E+03 5.37E+03 O.OOE+00 O.OOE+00 
20.94 4.86E+03 O.OOE+00 O.OOE+00 O.OOE+00 
24.98 2.43E+03 1.07E+04 O.OOE+00 O.OOE+OO 
29.81 O.OOE+OO 2.69E+03 O.OOE+OO 3.05E+03 
35.56 O.OOE+OO O.OOE+OO 2.25E+03 6.11E+03 
42.43 2.43E+03 O.OOE+OO 8.99E+03 3.05E+03 
50.63 O.OOE+OO O.OOE+OO 2.25E+03 1.53E+03 
60.41 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO O.OOE+OO 1.53E+03 
86.00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO O.OOE+OO 1.53E+03 
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459 

11/10/87 
Time > 

homog 0 min 1 min 3 min 5 min 10 min 
.1 0 1 3 5 10 

dia. 

0.87 6.35E+05 3.89E+05 3.03E+05 2.43E+05 2.29E+05 l.OlE+05 
1.04 6.12E+05 3.85E+05 3.41E+05 2.58E+05 1.95E+05 1.53E+05 
1.24 6.68E+05 4.84E+05 3.00E+05 4.52E+05 2.66E+05 1.56E+05 
1.48 8.88E+05 6.49E+05 5.86E+05 5.15E+05 3.84E+05 2.26E+05 
1.77 7.50E+05 5.46E+05 4.57E+05 4.85E+05 3.28E+05 1.64E+05 
2.11 6.52E+05 7.36E+05 4.53E+05 4.93E+05 3.00E+05 1.87E+05 
2.51 4.16E+05 4.96E+05 3.61E+05 3.17E+05 2.88E+05 8.58E+04 
3.00 1.90E+05 3.10E+05 2.22E+05 2.65E+05 1.18E+05 7.54E+04 
3.58 1.21E+05 1.86E+05 1.40E+05 1.46E+05 9.59E+04 5.20E+04 
4.27 6.55E+04 1.16E+05 9.55E+04 8.58E+04 4.64E+04 4.94E+04 
5.10 3.60E+04 7.03E+04 5.45E+04 8.58E+04 5.26E+04 1.30E+04 
6.08 1.64E+04 4.55E+04 1.36E+04 2.99E+04 3.71E+04 1.82E+04 
7.26 9.83E+03 8.27E+03 1.70E+04 1.87E+04 6.19E+03 -7.80E+03 
8.66 O.OOE+00 8.27E+03 3.41E+03 1.49E+04 3.09E+03 O.OOE+00 
10.33 O.OOE+00 1.24E+04 O.OOE+00 1.49E+04 3.09E+03 2.60E+03 
12.33 O.OOE+00 O.OOE+00 3.41E+03 O.OOE+00 9.28E+03 7.80E+03 
14.71 O.OOE+00 8.27E+03 3.41E+03 1.12E+04 3.09E+03 2.60E+03 
17.55 3.28E+03 O.OOE+00 1.02E+04 O.OOE+00 3.09E+03 5.20E+03 
20.94 O.OOE+00 O.OOE+00 O.OOE+00 O.OOE+00 6.19E+03 5.20E+03 
24.98 O.OOE+00 O.OOE+00 O.OOE+00 O.OOE+00 O.OOE+00 2.60E+03 
29.81 O.OOE+00 O.OOE+00 O.OOE+00 O.OOE+00 O.OOE+00 2.60E+03 
35.56 O.OOE+00 O.OOE+00 O.OOE+00 O.OOE+00 O.OOE+00 2.60E+03 
42.43 O.OOE+00 O.OOE+00 O.OOE+00 O.OOE+00 O.OOE+00 2.60E+03 
50.63 O.OOE+00 O.OOE+00 O.OOE+00 O.OOE+00 O.OOE+00 O.OOE+00 
60.41 O.OOE+00 O.OOE+00 O.OOE+00 O.OOE+00 O.OOE+00 O.OOE+00 

• 72.08 O.OOE+00 O.OOE+00 O.OOE+00 O.OOE+00 O.OOE+00 O.OOE+00 
86.00 O.OOE+00 O.OOE+OO O.OOE+00 O.OOE+00 O.OOE+00 O.OOE+00 

• 102.62 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
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15 min 20 min 25 min 30 min 
15 20 25 30 

dla. 

0.87 1.33E+05 7.94E+04 5.70E+04 4.89E+04 
1.04 8.95E+04 5.42E+04 6.74E+04 6.16E+04 
1.24 1.41E+05 8.90E+04 5.87E+04 7.26E+04 
1.48 1.69E+05 1.35E+05 1.09E+05 l.OlE+05 
1.77 1.46E+05 8.71E+04 5.87E+04 7.74E+04 
2.11 1.05E+05 8.13E+04 6.39E+04 8.21E+04 
2.51 8.44E+04 7.36E+04 3.97E+04 3.79E+04 
3.00 4.35E+04 3.48E+04 2.07E+04 2.05E+04 
3.58 3.32E+04 1.94E+04 1.38E+04 1.42E+04 
4.27 2.05E+04 7.74E+03 8.64E+03 4.74E+03 
5.10 2.30E+04 9.68E+03 8.64E+03 1.58E+03 
6.08 1.02E+04 3.87E+03 5.18E+03 1.58E+03 
7.26 7.67E+03 5.81E+03 1.73E+03 O.OOE+00 
8.66 2.56E+03 3.87E+03 1.73E+03 7.89E+03 
10.33 2.56E+03 3.87E+03 O.OOE+00 O.OOE+00 
12.33 2.56E+03 O.OOE+00 1.73E+03 3.16E+03 
14,71 O.OOE+00 O.OOE+00 1.73E+03 3.16E+03 
17.55 7.67E+03 O.OOE+OO O.OOE+00 1.58E+03 
20.94 O.OOE+OO O.OOE+OO O.OOE+OO 1.58E+03 
24.98 O.OOE+OO O.OOE+OO O.OOE+OO 1.58E+03 
29.81 2.56E+03 1.94E+03 1.73E+03 O.OOE+OO 
35.56 O.OOE+OO 3.87E+03 5.18E+03 O.OOE+OO 
42.43 5.12E+03 3.87E+03 O.OOE+OO 3.16E+03 
50.63 O.OOE+OO 1.94E+03 1.73E+03 1.58E+03 
60.41 O.OOE+OO 1.94E+03 1.73E+03 O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO O.OOE+OO 1.58E+03 
86.00 O.OOE+OO 1.94E+03 O.OOE+OO 1.58E+03 
102.62 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO 3.28E+03 O.OOE+OO 3.28E+03 



www.manaraa.com

461 

11/12/87 
Time > 

homog 
-1 

0 min 
0 

1 min 
1 

3 min 
3 

5 min 10 min 
5 10 

dla 

0.87 6.08E+05 5.00E+05 3.90E+05 3.07E+05 2.85E+05 1.88E+05 
1.04 4.96E+05 6.20E+05 4.01E+05 4.03E+05 3.02E+05 1.46E+05 
1.24 6.92E+05 6.66E+05 4.35E+05 4.03E+05 3.68E+05 2.26E+05 
1.48 9.92E+05 8.73E+05 5.74E+05 6.30E+05 3.99E+05 3.29E+05 
1.77 7.62E+05 7.86E+05 6.37E+05 5.18E+05 3.82E+05 2.73E+05 
2.11 5.25E+05 7.40E+05 5.66E+05 4.45E+05 3.53E+05 1.96E+05 
2.51 2.71E+05 4.43E+05 3.71E+05 3.42E+05 2.70E+05 1.66E+05 
3.00 1.58E+05 1.82E+05 2.25E+05 2.08E+05 1.52E+05 1.13E+05 
3.58 6.67E+04 1.28E+05 9.75E+04 8.32E+04 7.47E+04 6.35E+04 
4.27 4.17E+04 7.86E+04 7.50E+04 3.84E+04 6.90E+04 4.14E+04 
5.10 2.92E+04 2.48E+04 2.25E+04 3.84E+04 3.45E+04 2.48E+04 
6.08 1.25E+04 4.14E+03 4.12E+04 1.60E+04 1.15E+04 1.93E+04 
7.26 4.17E+03 1.24E+04 7.50E+03 1.60E+04 3.16E+04 l.lOE+04 
8.66 O.OOE+OO 4.14E+03 O.OOE+OO 3.20E+03 1.15E+04 1.66E+04 
10.33 O.OOE+OO O.OOE+OO 7.50E+03 6.40E+03 8.62E+03 2.76E+03 
12.33 O.OOE+OO O.OOE+OO O.OOE+OO 9.60E+03 O.OOE+OO 1.38E+04 
14.71 O.OOE+OO O.OOE+OO 3.75E+03 O.OOE+OO 2.87E+03 O.OOE+OO 
17.55 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 1.10E+04 
20.94 O.OOE+OO O.OOE+OO O.OOE+OO 3.20E+03 2.87E+03 2.76E+03 
24.98 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 5.52E+03 
29.81 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 2.76E+03 
35.56 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
42.43 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 2.76E+03 
50.63 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
86.00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
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15 min 20 min 25 min 30 min 
15 20 25 30 

dia. 

0.87 1.53E+05 7.94E+04 5.30E+04 6.11E+04 
1.04 1.40E+05 8.29E+04 5.62E+Ô4 4.58E+04 
1.24 1.53E+05 9.50E+04 8.02E+04 4.43E+04 
1.48 1.73E+05 1.14E+05 8.99E+04 8.70E+04 
1.77 1.65E+05 9.15E+04 5.94E+04 6.56E+04 
2.11 1.46E+05 8.46E+04 6.58E+04 6.56E+04 
2.51 1.09E+05 7.94E+04 3.85E+04 3.82E+04 
3.00 6.07E+04 3.80E+04 2.41E+04 2.14E+04 
3.58 3.47E+04 1.55E+04 2.25E+04 1.07E+04 
4.27 3.30E+04 1.38E+04 1.28E+04 9.16E+03 
5.10 2.60E+04 1.04E+04 1.60E+03 4.58E+03 
6.08 5.20E+03 5.18E+03 O.OOE+OO 6.11E+03 
7.26 1.04E+04 O.OOE+OO 3.21E+03 3.05E+03 
8.66 1.04E+04 6.91E+03 O.OOE+OO O.OOE+OO 
10.33 6.94E+03 1.73E+03 O.OOE+OO O.OOE+OO 
12.33 3.47E+03 1.73E+03 O.OOE+OO 1.53E+03 
14.71 3.47E+03 1.73E+03 1.60E+03 O.OOE+OO 
17.55 3.47E+03 O.OOE+OO O.OOE+OO O.OOE+OO 
20.94 5.20E+03 3.45E+03 O.OOE+OO O.OOE+OO 
24.98 3.47E+03 O.OOE+OO 1.60E+03 O.OOE+OO 
29.81 1.73E+03 5.18E+03 O.OOE+OO 3.05E+03 
35.56 3.47E+03 5.18E+03 O.OOE+OO 3.05E+03 
42.43 O.OOE+OO 3.45E+03 1.60E+03 1.53E+03 
50.63 O.OOE+OO O.OOE+OO O.OOE+OO 1.53E+03 
60.41 O.OOE+OO 1.73E+03 1.60E+03 1.53E+03 
72.08 O.OOE+OO O.OOE+OO O.OOE+OO 1.53E+03 
86.00 O.OOE+OO 1.73E+03 1.60E+03 3.05E+03 
102.62 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
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11/19/87 
Time > 

homog 
-1 

0 min 
0 

1 min 
1 

3 min 
3 

5 min 10 min 
5 10 

dla 

0.87 4.96E+05 6.46E+05 5.36E+05 5.95E+05 5.02E+05 4.19E+05 
1.04 5.79E+05 6.32E+05 5.66E+05 5.24E+05 5.71E+05 4.41E+05 
1.24 7.04E+05 7.00E+05 5.96E+05 7.12E+05 6.51E+05 6.18E+05 
1.48 9.50E+05 1.04E+06 9.60E+05 1.05E+06 8.28E+05 8.38E+05 
1.77 7.58E+05 l.lOE+06 8.55E+05 9.13E+05 7.96E+05 8.21E+05 
2.11 5.62E+05 7.73E+05 6.67E+05 7.21E+05 7.72E+05 7.41E+05 
2.51 4.12E+05 5.64E+05 4.31E+05 3.94E+05 4.18E+05 5.12E+05 
3.00 1.54E+05 2.14E+05 2.17E+05 2.46E+05 3.34E+05 2.74E+05 
3.58 8.75E+04 l.OOE+05 9.00E+04 1.25E+05 l.OOE+05 1.99E+05 
4.27 2.08E+04 2.27E+04 3.00E+04 5.37E+04 6.83E+04 1.24E+05 
5.10 1.67E+04 2.27E+04 2.25E+04 1.34E+04 2.81E+04 3.09E+04 
6.08 2.92E+04 9.10E+03 O.OOE+OO 1.34E+04 1.61E+04 2.65E+04 
7.26 O.OOE+OO 9.10E+03 O.OOE+OO 1.34E+04 1.21E+04 1.32E+04 
8.66 8.33E+03 4.55E+03 7.50E+03 8.95E+03 O.OOE+OO 8.83E+03 
10.33 O.OOE+OO O.OOE+OO 3.75E+03 O.OOE+OO O.OOE+OO O.OOE+OO 
12.33 4.17E+03 O.OOE+OO 3.75E+03 O.OOE+OO O.OOE+OO 4.41E+03 
14.71 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
17.55 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
20.94 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
24.98 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
29.81 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
35.56 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
42.43 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
50.63 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
86.00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
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15 min 20 min 
15 20 

dia. 

0.87 3.66E+05 4.96E+05 
1.04 4.68E+05 4.08E+05 
1.24 5.52E+05 4.79E+05 
1.48 7.68E+05 6.41E+05 
1.77 7.10E+05 6.02E+05 
2.11 6.80E+05 6.85E+05 
2.51 4.85E+05 5.97E+05 
3.00 4.28E+05 4.35E+05 
3.58 1.68E+05 1.54E+05 
4.27 l.lOE+05 l;58E+05 
5.10 5.30E+04 5.71E+04 
6.08 2.21E+04 2.20E+04 
7.26 2.21E+04 2.64E+04 
8.66 8.83E+03 8.78E+03 
10.33 O.OOE+OO O.OOE+OO 
12.33 O.OOE+OO O.OOE+OO 
14.71 O.OOE+OO O.OOE+OO 
17.55 O.OOE+OO O.OOE+OO 
20.94 O.OOE+OO O.OOE+OO 
24.98 O.OOE+OO O.OOE+OO 
29.81 O.OOE+OO O.OOE+OO 
35.56 O.OOE+OO O.OOE+OO 
42.43 O.OOE+OO O.OOE+OO 
50.63 O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO 
86.00 O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO 

25 min 30 min 45 min 
25 30 45 

3.78E+05 3.33E+05 2.70E+05 
3.71E+05 2.87E+05 2.14E+05 
5.28E+05 4.12E+05 2.88E+05 
7.41E+05 6.49E+05 3.97E+05 
5.69E+05 5.37E+05 3.50E+05 
5.61E+05 4.66E+05 3.26E+05 
3.93E+05 4.04E+05 2.53E+05 
2.32E+05 2.08E+05 1.91E+05 
1.05E+05 1.83E+05 7.64E+04 
6.36E+04 9.15E+04 4.70E+04 
3.74E+04 7.49E+04 2.35E+04 
2.99E+04 3.74E+04 2.94E+04 
2.25E+04 3.74E+04 8.81E+03 
2.25E+04 1.25E+04 1.76E+04 
1.12E+04 8.32E+03 2.06E+04 
O.OOE+OO 8.32E+03 8.81E+03 
O.OOE+OO 4.16E+03 2.94E+03 
O.OOE+OO 8.32E+03 2.94E+03 
O.OOE+OO O.OOE+OO 2.94E+03 
O.OOE+OO O.OOE+OO 2.94E+03 
O.OOE+OO O.OOE+OO 2.94E+03 
O.OOE+OO O.OOE+OO 5.88E+03 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
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466 

15 min 20 min 
15 20 

dla. 

0.87 5.11E+05 5.47E+05 
1.04 6.25E+05 6.17E+05 
1.24 6.41E+05 7.24E+05 
1.48 9.49E+05 9.28E+05 
1.77 6.90E+05 8.64E+05 
2.11 8.52E+05 8.32E+05 
2.51 6.49E+05 5.58E+05 
3.00 3.57E+05 2.74E+05 
3.58 1.87E+05 1.39E+05 
4.27 8.11E+04 8.58E+04 
5.10 2.43E+04 3.22E+04 
6.08 1.62E+04 2.68E+04 
7.26 8.11E+03 O.OOE+OO 
8.66 O.OOE+OO 1.61E+04 

10.33 O.OOE+OO O.OOE+OO 
12.33 O.OOE+OO O.OOE+OO 
14.71 O.OOE+OO O.OOE+OO 
17.55 O.OOE+OO O.OOE+OO 
20.94 O.OOE+OO O.OOE+OO 
24.98 O.OOE+OO O.OOE+OO 
29.81 O.OOE+OO O.OOE+OO 
35.56 O.OOE+OO O.OOE+OO 
42.43 O.OOE+OO O.OOE+OO 
50.63 O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO 
86.00 O.OOE+OO O.OOE+OO 

102.62 O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO 

25 min 30 min 45 min 
25 30 45 

4.54E+05 4.94E+05 3.33E+05 
4.44E+05 4.53E+05 3.78E+05 
5.78E+05 5.17E+05 4.27E+05 
7.48E+05 6.68E+05 4.97E+05 
7.13E+05 7.73E+05 5.59E+05 
6.43E+05 6.68E+05 3.66E+05 
4.24E+05 4.67E+05 3.04E+05 
2.59E+05 3.02E+05 2.67E+05 
1.30E+05 1.51E+05 1.44E+05 
3.49E+04 8.23E+04 6.58E+04 
3.99E+04 5.95E+04 3.29E+04 
1.50E+04 2.29E+04 1.64E+04 
1.50E+04 1.83E+04 3.29E+04 
9.97E+03 4.57E+03 2.88E+04 
4.99E+03 4.57E+03 1.64E+04 
O.OOE+OO O.OOE+OO 1.23E+04 
O.OOE+OO O.OOE+OO 4.11E+03 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO 4.11E+03 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
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467 

01/14/88 

Time > 

homog 
-1 

0 mln 
0 

1 mln 
1 

3 mln 
3 

5 mln 10 mln 
5 10 

dla. 

0.87 7.08E+05 7.82E+05 5.69E+05 6.45E+05 6.96E+05 4.70E+05 
1.04 6.96E+05 8.48E+05 6.02E+05 6.62E+05 6.60E+05 5.53E+05 
1.24 7.62E+05 8.35E+05 7.90E+05 8.92E+05 8.17E+05 5.64E+05 
1.48 9.62E+05 1.22E+06 9.68E+05 1.29E+06 9.17E+05 8.47E+05 
1.77 8.25E+05 9.88E+05 8,60E+05 9.09E+05 9.73E+05 7.47E+05 
2.11 5.79E+05 7.94E+05 6.49E+05 8.76E+05 8.06E+05 8.35E+05 
2.51 3.58E+05 4.26E+05 4.04E+05 5.56E+05 5.44E+05 5.86E+05 
3.00 1.67E+05 2.07E+05 2.12E+05 2.64E+05 3.23E+05 3.54E+05 
3.58 5.00E+04 4.55E+04 9.40E+04 1.52E+05 1.06E+05 2.27E+05 
4.27 1.67E+04 2.48E+04 1.88E+04 5.05E+04"4.54E+04 7.75E+04 
5.10 1.67E+04 O.OOE+OO 2.82E+04 2.24E+04 l.OlE+04 3.32E+04 
6.08 1.67E+04 4.14E+03 9.40E+03 1.12E+04 5.04E+03 2.21E+04 
7.26 4.17E+03 4.14E+03 O.OOE+OO O.OOE+OO 5.04E+03 1.66E+04 
8.66 O.OOE+OO 4.14E+03 O.OOE+OO 1.12E+04 O.OOE+OO O.OOE+OO 
10.33 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
12.33 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
14.71 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
17.55 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
20.94 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
24.98 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
29.81 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
35.56 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
42,43 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
50.63 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
72,08 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
86,00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 



www.manaraa.com

468 

15 min 20 min 
15 20 

dla. 

0.87 5.29E+05 4.00E+05 
1.04 4.93E+05 4.12E+05 
1.24 4.56E+05 5.94E+05 
1.48 7.61E+05 6.54E+05 
1.77 7.42E+05 6.42E+05 
2.11 6.69E+05 6.72E+05 
2.51 5.42E+05 5.27E+05 
3.00 4.44E+05 3.69E+05 
3.58 2.13E+05 2.42E+05 
4.27 9.13E+04 1.51E+05 
5.10 8.52E+04 1.03E+05 
6.08 2.43E+04 3.63E+04 
7.26 1.83E+04 1.82E+04 
8.66 6.08E+03 2.42E+04 
10.33 O.OOE+OO O.OOE+OO 
12.33 O.OOE+OO O.OOE+OO 
14.71 O.OOE+OO O.OOE+OO 
17.55 O.OOE+OO O.OOE+OO 
20.94 O.OOE+OO O.OOE+OO 
24.98 O.OOE+OO O.OOE+OO 
29.81 O.OOE+OO O.OOE+OO 
35.56 O.OOE+OO O.OOE+OO 
42.43 O.OOE+OO O.OOE+OO 
50.63 O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO 
86.00 O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO 

25 min 30 min 45 min 
25 30 45 

3.27E+05 3.29E+05 2.39E+05 
3.18E+05 3.12E+05 1.91E+05 
3.92E+05 3.08E+05 2.28E+05 
6.04E+05 5.08E+05 3.29E+05 
4.53E+05 3.95E+05 3.06E+05 
3.80E+05 4.87E+05 2.62E+05 
3.14E+05 4.28E+05 2.47E+05 
2.49E+05 2.79E+05 1.61E+05 
2.00E+05 2.00E+05 1.27E+05 
1.51E+05 1.37E+05 1.08E+05 
7.76E+04 7.90E+04 5.61E+04 
4.08E+04 7.07E+04 4.11E+04 
2.04E+04 2.91E+04 4.86E+04 
4.08E+03 4.16E+04 4.11E+04 
1.22E+04 1.66E+04 1.49E+04 
O.OOE+OO 4.16E+03 1.87E+04 
O.OOE+OO O.OOE+OO 3.74E+03 
O.OOE+OO O.OOE+OO 7.47E+03 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
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01/19/88 
Time > 

homog 
-1 

0 mln 
0 

1 mln 
1 

3 mln 
3 

5 mln 10 mln 
5 10 

dla. 

0.87 8.99E+05 6.26E+05 5.70E+05 5.37E+05 4.74E+05 4.53E+05 
1.04 8.60E+05 5.66E+05 5.16E+05 5.72E+05 5.29E+05 5.86E+05 
1 24 1.06E+06 8.23E+05 5.50E+05 6.26E+05 7.86E+05 6.42E+05 
1.48 1.60E+06 1.02E+06 7.91E+05 7.26E+05 9.83E+05 8.35E+05 
1.77 1.13E+06 1.05E+06 6.33E+05 7.76E+05 7.31E+05 7.62E+05 
2.11 8.53E+05 7.98E+05 7.04E+05 6.96E+05 7.51E+05 5.90E+05 
2.51 5.32E+05 5.86E+05 3.91E+05 4.77E+05 4.49E+05 5.34E+05 
3.00 2.30E+05 4.14E+05 1.83E+05 2.63E+05 3.12E+05 3.09E+05 
3.58 1.38E+05 1.46E+05 7.91E+04 9.94E+04 1.46E+05 1.44E+05 
4.27 2.63E+04 8.59E+04 3.33E+04 7.95E+04 7.06E+04 5.62E+04 
5.10 1.97E+04 4.04E+04 1.67E+04 2.49E+04 5.04E+03 2.01E+04 
6.08 1.31E+04 l.OlE+04 1.25E+04 O.OOE+OO 1.51E+04 O.OOE+OO 
7.26 O.OOE+OO 2.02E+04 O.OOE+OO 1.49E+04 1.01E+04 8.03E+03 
8.66 O.OOE+OO l.OlE+04 4.16E+03 1.99E+04 5.04E+03 1.20E+04 
10.33 6.57E+03 O.OOE+OO 4.16E+03 O.OOE+OO O.OOE+OO 4.01E+03 
12.33 O.OOE+OO O.OOE+OO 8.33E+03 O.OOE+OO O.OOE+OO O.OOE+OO 
14.71 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
17.55 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
20.94 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
24!98 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
29.81 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
35.56 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
42.43 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
50.63 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
60!41 O.OOE+OO O.OOE+OO O.OOE+00 O.OOE+OO O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
86.00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
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15 min 20 min 25 min 30 min 45 min 
15 20 25 30 45 

dla. 

0.87 3.64E+05 3.73E+05 2.94E+05 2.70E+05 1.80E+05 
1.04 3.64E+05 3.03E+05 3.22E+05 2.08E+05 1.83E+05 
1.24 4.85E+05 4.44E+05 2.78E+05 3.54E+05 2.18E+05 
1.48 7.18E+05 6.02E+05 4.69E+05 3.58E+05 2.21E+05 
1.77 5.87E+05 4.83E+05 4.25E+05 3.87E+05 1.77E+05 
2.11 6.65E+05 4.70E+05 3.96E+05 4.12E+05 2.09E+05 
2.51 5.39E+05 4.08E+05 2.86E+05 2.95E+05 1.80E+05 
3.00 4.61E+05 2.24E+05 2.08E+05 2.45E+05 1.33E+05 
3.58 1.89E+05 1.54E+05 1.18E+05 1.46E+05 9.81E+04 
4.27 1.21E+05 7.91E+04 8.57E+04 7.90E+04 5.38E+04 
5.10 4.85E+04 5.71E+04 4.08E+04 8.32E+04 5.38E+04 
6.08 1.46E+04 2.64E+04 2.04E+04 4.99E+04 2.53E+04 
7.26 1.94E+04 2.20E+04 2.04E+04 2.50E+04 2.85E+04 
8.66 O.OOE+OO 1.32E+04 1.22E+04 1.66E+04 2.21E+04 
10.33 O.OOE+OO 4.39E+03 4.08E+03 8.32E+03 6.33E+03 
12.33 O.OOE+OO O.OOE+OO O.OOE+OO 8.32E+03 2.21E+04 
14.71 O.OOE+OO 8.78E+03 O.OOE+OO O.OOE+OO O.OOE+OO 
17.55 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 9.49E+03 
20.94 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
24.98 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
29.81 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
35.56 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
42.43 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
50.63 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
86.00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
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12/15/87• 
Time > 

homog 
-1 

0 mln 
0 

1 mln 
1 

3 mln 
3 

5 mln 
5 

10 mln 
10 

dla 

0.87 4.96E+05 5.71E+05 4.12E+05 5.09E+05 4.53E+05 4.71E+05 
1.04 5.04E+05 5.75E+05 4.94E+05 4.52E+05 5.15E+05 5.54E+05 
1.24 6.50E+05 6.29E+05 5.76E+05 5.98E+05 6.62E+05 5.78E+05 
1.48 8.79E+05 8.77E+05 8.69E+05 8.34E+05 8.30E+05 7.60E+05 
1.77 6.67E+05 7.98E+05 7.19E+05 6.88E+05 7.71E+05 7.65E+05 
2.11 4.29E+05 6.58E+05 5.39E+05 5.98E+05 5.89E+05 4.80E+05 
2.51 3.00E+05 4.34E+05 3.27E+05 3.99E+05 3.84E+05 3.72E+05 
3.00 1.21E+05 1.57E+05 1.23E+05 1.95E+05 1.54E+05 1.91E+05 
3.58 3.33E+04 9.10E+04 9.89E+04 1.06E+05 6.21E+04 6.86E+04 
4.27 8.33E+03 2.89E+04 1.70E+04 3.26E+04 2.92E+04 2.94E+04 
5.10 1.67E+04 O.OOE+OO 3.41E+03 1.63E+04 2.56E+04 1.47E+04 
6.08 4.17E+03 4.14E+03 6.82E+03 4.07E+03 O.OOE+OO 9.80E+03 
7.26 4.17E+03 O.OOE+OO 6.82E+03 4.07E+03 l.lOE+04 9.80E+03 
8.66 O.OOE+OO 4.14E+03 1.02E+04 O.OOE+OO l.lOE+04 O.OOE+OO 
10.33 O.OOE+OO 4.14E+03 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
12.33 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
14.71 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
17.55 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
20.94 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
24.98 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
29.81 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
35.56 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
42.43 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
50.63 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
•86.00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
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15 min 
15 

20 min 
20 

25 min 
25 

30 min 
30 

45 min 
45 

dia. 

0.87 4.19E+05 4.04E+05 
1.04 3.84E+05 4.35E+05 
1.24 4.50E+05 4.66E+05 
1.48 8.07E+05 5.80E+05 
1.77 6.13E+05 4.66E+05 
2.11 5.65E+05 4.13E+05 
2,51 4.24E+05 2.81E+05 
3.00 2.16E+05 1.84E+05 
3.58 1.46E+05 1.05E+05 
4.27 8.38E+04 9.22E+04 
5.10 6.18E+04 3.07E+04 
6.08 2.21E+04 1.76E+04 
7.26 4.41E+03 1.32E+04 
8.66 1.32E+04 8.78E+03 
10.33 4.41E+03 4.39E+03 
12.33 4.41E+03 O.OOE+OO 
14.71 O.OOE+OO O.OOE+OO 
17.55 O.OOE+OO O.OOE+OO 
20.94 O.OOE+OO O.OOE+OO 
24.98 O.OOE+OO O.OOE+OO 
29.81 O.OOE+OO O.OOE+OO 
35.56 O.OOE+OO O.OOE+OO 
42.43 O.OOE+OO O.OOE+OO 
50.63 O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO 
86.00 O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO 

2.69E+05 3.37E+05 1.67E+05 
2.57E+05 2.58E+05 1.62E+05 
3.55E+05 3.24E+05 1.85E+05 
5.47E+05 3.83E+05 2.44E+05 
4.69E+05 3.74E+05 1.79E+05 
3.51E+05 4.24E+05 1.91E+05 
2.69E+05 2.70E+05 9.70E+04 
1.76E+05 1.62E+05 1.12E+05 
4.90E+04 1.12E+05 4.70E+04 
4.49E+04 4.99E+04 4.41E+04 
2.04E+04 4.16E+04 2.06E+04 
2.86E+04 5.41E+04 2.35E+04 
1.63E+04 8.32E+03 1.47E+04 
8.16E+03 1.66E+04 1.76E+04 
4.08E+03 4.16E+03 1.18E+04 
O.OOE+OO 8.32E+03 5.88E+03 
O.OOE+OO 4.16E+03 2.94E+03 
4.08E+03 O.OOE+OO 1.47E+04 
O.OOE+OO O.OOE+OO 2.94E+03 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO 2.94E+03 
O.OOE+OO O.OOE+OO 2.94E+03 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
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12/08/87 
Time > 

homog 
-1 

0 min 
0 

1 min 
1 

3 min 
3 

5 min 10 min 
5 10 

dia. 

0.87 6.72E+05 7.43E+05 7.04E+05 6.76E+05 6.30E+05 6.27E+05 
1.04 6.87E+05 6.31E+05 5.00E+05 6.66E+05 5.63E+05 5.44E+05 
1.24 7.63E+05 9.04E+05 7.33E+05 6.71E+05 6.52E+05 7.06E+05 
1.48 l.lOE+06 1.21E+06 8.33E+05 1.04E+06 8.62E+05 9.61E+05 
1.77 7.89E+05 9.40E+05 6.50E+05 8.05E+05 7.37E+05 8.09E+05 
2.11 7.12E+05 7.12E+05 5.54E+05 5.97E+05 6.47E+05 5.78E+05 
2.51 4.12E+05 4.29E+05 2.62E+05 4.13E+05 3.17E+05 4.90E+05 
3.00 2.09E+05 2.37E+05 1.67E+05 1.59E+05 2.05E+05 2.35E+05 
3.58 1.17E+05 9.09E+04 7.91E+04 5.97E+04 7.59E+04 1.96E+05 
4.27 3.56E+04 4.04E+04 6.25E+04 2.98E+04 3.57E+04 3.43E+04 
5.10 4.58E+04 2.53E+04 1.25E+04 4.97E+03 1.34E+04 2.94E+04 
6.08 1.02E+04 O.OOE+OO 4.16E+03 1.99E+04 O.OOE+OO 9.80E+03 
7,26 1.02E+04 1.52E+04 4.16E+03 O.OOE+OO 1.34E+04 1.47E+04 
8.66 O.OOE+OO O.OOE+OO 8.33E+03 4.97E+03 O.OOE+OO 9.80E+03 
10.33 O.OOE+OO O.OOE+OO O.OOE+OO 9.94E+03 O.OOE+OO O.OOE+OO 
12.33 O.OOE+OO O.OOE+OO O.OOE+OO 4.97E+03 O.OOE+OO O.OOE+OO 
14.71 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
17.55 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 4.90E+03 
20.94 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
24.98 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
29.81 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
35.56 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
42.43 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
50.63 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
86.00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
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IS min 20 min 
15 20 

dla. 

0.87 4.90E+05 4.92E+05 
1.04 5.44E+05 4.39E+05 
1.24 6.31E+05 5.62E+05 
1.48 7.65E+05 6.81E+05 
1.77 5.82E+05 5.80E+05 
2.11 5.23E+05 5.31E+05 
2.51 3.99E+05 4.26E+05 
3.00 2.91E+05 2.68E+05 
3.58 1.19E+05 1.27E+05 
4,27 7.01E+04 8.34E+04 
5.10 5.93E+04 5.27E+04 
6.08 1.08E+04 3.51E+04 
7.26 5.39E+03 8.78E+03 
8.66 O.OOE+00 4.39E+03 
10.33 5.39E+03 4.39E+03 
12.33 O.OOE+00 8.78E+03 
14.71 O.OOE+00 O.OOE+00 
17.55 O.OOE+00 O.OOE+00 
20.94 O.OOE+00 O.OOE+00 
24.98 O.OOE+00 O.OOE+00 
29.81 O.OOE+00 O.OOE+00 
35.56 O.OOE+00 O.OOE+00 
42.43 O.OOE+00 O.OOE+00 
50.63 O.OOE+00 O.OOE+00 
60.41 O.OOE+00 O.OOE+00 
72.08 O.OOE+00 O.OOE+00 
86.00 O.OOE+00 O.OOE+00 
102.62 O.OOE+00 O.OOE+00 
122.44 O.OOE+00 O.OOE+00 

25 min 30 min 45 min 
25 30 45 

3.55E+05 3.36E+05 1.97E+05 
3.80E+05 2.75E+05 2.77E+05 
3.76E+05 3.85E+05 2.41E+05 
5.76E+05 4.40E+05 3.37E+05 
5.02E+05 4.03E+05 2.96E+05 
4.82E+05 3.72E+05 2.08E+05 
4.33E+05 2.14E+05 1.87E+05 
2.65E+05 2.17E+05 1.37E+05 
1.35E+05 l.lOE+05 9.87E+04 
7.76E+04 6.72E+04 7.13E+04 
4.Ô8E+04 3.97E+04 3.02E+04 
1.22E+04 3.66E+04 2.47E+04 
2.04E+04 2.14E+04 1.37E+04 
4.08E+03 1.53E+04 l.lOE+04 
4.08E+03 1.53E+04 l.lOE+04 
1.22E+04 O.OOE+OO 1.10E+04 
O.OOE+00 O.OOE+OO 8.23E+03 
O.OOE+OO O.OOE+OO 8.23E+03 
O.OOE+OO 3.05E+03 8.23E+03 
O.OOE+OO O.OOE+OO 2.74E+03 
4.08E+03 3.05E+03 O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
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12/31/87 
Time > 

homog 
-1 

0 mln 
0 

1 mln 
1 

3 mln 
3 

5 mln 10 mln 
5 10 

dla. 

0.87 5.87E+05 5.83E+05 5.25E+05 6.59E+05 6.03E+05 4.86E+05 
1.04 6.29E+05 6.24E+05 5.66E+05 6.31E+05 5.48E+05 4.82E+05 
1.24 9.25E+05 9.18E+05 7.19E+05 7.45E+05 5.99E+05 5.50E+05 
1.48 1.02E+06 1.02E+06 9.07E+05 9.69E+05 8.41E+05 6.98E+05 
1.77 9.00E+05 8.93E+05 8.49E+05 7.98E+05 7.20E+05 6.34E+05 
2.11 8.04E+05 7.98E+05 6.72E+05 6.92E+05 6.03E+05 5.58E+05 
2.51 5.21E+05 5.17E+05 4.33E+05 4.64E+05 4.79E+05 4.21E+05 
3.00 2.83E+05 2.81E+05 1.84E+05 2.81E+05 2.12E+05 2.49E+05 
3.58 1.29E+05 1.28E+05 8.52E+04 8.14E+04 1.32E+05 1.61E+05 
4.27 4.17E+04 4.14E+04 O.OOE+OO 4.07E+04 2.92E+04 6.82E+04 
5.10 8.33E+03 8.27E+03 1.02E+04 2.44E+04 1.46E+04 2.41E+04 
6.08 4.17E+03 4.14E+03 6.82E+03 8.14E+03 3.66E+03 8.03E+03 
>7.26 4.17E+03 4.14E+03 6.82E+03 O.OOE+OO 7.31E+03 O.OOE+OO 
8.66 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 3.66E+03 4.01E+03 
10.33 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
12.33 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
14.71 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
17.55 p.OOE+00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
20.94 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
24.98 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
29.81 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
35.56 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
42.43 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
50.63 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
86.00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
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15 min 20 min 
15 20 

dla. 

0.87 4.85E+05 2.77E+05 
1.04 3.97E+05 3.12E+05 
1.24 5.12E+05 4.48E+05 
1.48 7.02E+05 5.71E+05 
1.77 5.82E+05 4.39E+05 
2.11 6.44E+05 4.74E+05 
2.51 5.38E+05 4.30E+05 
3.00 3.18E+05 2.90E+05 
3.58 1.41E+05 1.71E+05 
4.27 1.15E+05 l.lOE+05 
5.10 7.06E+04 7.47E+04 
6.08 3.97E+04 3.07E+04 
7.26 2.21E+04 3.95E+04 
8.66 4.41E+03 1.76E+04 
10.33 1.32E+04 1.32E+04 
12.33 O.OOE+OO 4.39E+03 
14,71 O.OOE+OO O.OOE+OO 
17.55 O.OOE+OO O.OOE+OO 
20.94 O.OOE+OO O.OOE+OO 
24.98 O.OOE+OO O.OOE+OO 
29.81 O.OOE+OO O.OOE+OO 
35.56 O.OOE+OO O.OOE+OO 
42.43 O.OOE+OO O.OOE+OO 
50.63 O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO 
86.00 O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO 

25 min 30 min 45 min 
25 30 45 

2.37E+05 3.04E+05 8.52E+04 
2.33E+05 3.20E+05 1.23E+05 
3.14E+05 4.12E+05 9.70E+04 
4.25E+05 4.45E+05 1.59E+05 
2.86E+05 3.70E+05 1.65E+05 
3.67E+05 3.66E+05 1.50E+05 
2.69E+05 2.54E+05 8.23E+04 
1.55E+05 1.54E+05 7.05E+04 
1.02E+05 1.12E+05 4.11E+04 
6.94E+04 4.16E+04 3.23E+04 
4.08E+04 4.99E+04 1.18E+04 
2.86E+04 1.66E+04 1.18E+04 
2.04E+04 1.25E+04 1.76E+04 
4.08E+03 1.25E+04 8.81E+03 
8.16E+03 8.32E+03 5.88E+03 
4.08E+03 8.32E+03 O.OOE+OO 
4.08E+03 1.25E+04 5.88E+03 
O.OOE+OO 1.66E+04 5.88E+03 
O.OOE+OO O.OOE+OO 5.88E+03 
8.16E+03 4.16E+03 2.94E+03 
O.OOE+OO 4.16E+03 8.81E+03 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
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00+300'0 00+300 0 00+300 0 00+300 0 00+300"0 00+300*0 tt*ZZI 
00+300*0 00+300*0 00+300*0 00+300*0 00+300*0 00+300*0 29*301 
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00+300*0 £0+399 * £ 00+300*0 00+300*0 00+300*0 00+300*0 ££*21 
00+300*0 90+301*1 £0+360*9 £0+319*£ 00+300*0 00+300*0 ££*01 
£0+310*9 £0+399 * £ £0+391*8 00+300*0 £0+391*9 £0+361*9 99*8 
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90+310*2 £0+399*£ 90+390*2 90+39£*l £0+362*8 £0+361*9 80*9 
90+319*2 90+361*2 90+322*1 90+320'1 £0+362*8 90+380*2 01'S 
90+310*9 90+362•£ 90+389*9 90+306*1 90+31E'£ 90+30S * 2 62*9 
50+389*1 90+366'8 90+315'9 90+305*6 90+355*9 90+3E8 5 85*£ 
50+352*£ 50+3E2'2 50+366*1 50+396 1 50+369*2 S0+a6£*l 00*£ 
50+322*5 50+39E'£ 50+326*9 50+358 * £ 50+350*5 50+356*2 15*2 
50+328*9 50+359*5 50+326*9 50+325*5 50+369*6 50+321*9 11'2 
50+391'6 50+32E * 9 50+390*8 50+30E'6 50+306*6 50+361*6 66'1 
50+306*6 50+322*8 50+392*8 50+369*8 50+366*8 50+369*6 89*1 
50+399*5 S0+32E * 9 50+398*5 50+392'9 50+306*9 50+3EE 9 92*1 
50+365*9 50+356*9 50+350*5 50+395*5 50+362*5 50+366*5 90*1 
S0+3£6'9 50+399*9 50+325*9 50+369*5 50+316"5 50+312*9 68*0 
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15 min , 20 min 
15 20 

dla. 

0.87 3.31E+05 2.94E+05 
1.04 3.79E+05 2.50E+05 
1.24 4.77E+05 3.29E+05 
1.48 5.91E+05 4.79E+05 
1.77 6.22E+05 5.01E+05 
2.11 6.05E+05 5.45E+05 
2.51 4.10E+05 3.25E+05 
3.00 3.35E+05 2.37E+05 
3.58 1.90E+05 1.58E+05 
4.27 1.32E+05 1.32E+05 
.5.10 4.85E+04 5.27E+04 
6.08 3.53E+04 3.51E+04 
7.26 2.65E+04 1.32E+04 
8.66 2.21E+04 8.78E+03 
10.33 8.83E+03 8.78E+03 
12.33 O.OOE+OO 1.32E+04 
14.71 O.OOE+OO O.OOE+OO 
17.55 O.OOE+OO 4.39E+03 
20.94 O.OOE+OO O.OOE+OO 
24.98 O.OOE+OO O.OOE+OO 
29.81 O.OOE+OO O.OOE+OO 
35.56 O.OOE+OO O.OOE+OO 
42.43 O.OOE+OO O.OOE+OO 
50.63 O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO 
86.00 O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO 

25 min 30 min 45 min 
25 30 45 

2.04E+05 2.41E+05 1.38E+05 
1.76E+05 2.25E+05 1.26E+05 
2.29E+05 2.83E+05 1.47E+05 
3.22E+05 3.70E+05 1.88E+05 
2.78E+05 3.04E+05 1.53E+05 
2.53E+05 3.16E+05 8.81E+04 
1.96E+05 2.12E+05 8.81E+04 
1.39E+05 2.29E+05 6.76E+04 
8.16E+04 1.29E+05 2.94E+04 
6.53E+04 9.57E+04 2.94E+04 
2.45E+04 3.74E+04 1.76E+04 
3.27E+04 1.66E+04 8.81E+03 
2.04E+04 3.33E+04 1.18E+04 
3.67E+04 1.25E+04 8.81E+03 
1.22E+04 1.66E+04 5.88E+03 
O.OOE+OO 8.32E+03 O.OOE+OO 
1.22E+04 O.OOE+OO 8.81E+03 
O.OOE+OO 1.66E+04 2.94E+03 
O.OOE+OO O.OOE+OO 2.94E+03 
4.08E+03 O.OOE+OO 5.88E+03 
O.OOE+OO 4.16E+03 O.OOE+OO 
O.OOE+OO O.OOE+OO 5.88E+03 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO.O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
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12/19/87 
Time > 

homog 
-1 

0 mln 
0 

1 mln 
1 

3 mln 
3 

5 min 10 mln 
5 10 

dla. 

0.87 5.71E+05 7.28E+05 5.11E+05 5.74E+05 5.67E+05 5.46E+05 
1.04 5.25E+05 6.04E+05 5.01E+05 6.02E+05 5.19E+05 5.14E+05 
1.24 5.71E+05 7.15E+05 6.14E+05 6.31E+05 6.03E+05 6.42E+05 
1.48 8.33E+05 9.93E+05 7.94E+05 9.08E+05 8.85E+05 7.74E+05 
1.77 7.46E+05 8.56E+05 7.16E+05 7.20E+05 6.84E+05 6.66E+05 
2.11 5.75E+05 7.73E+05 6.00E+05 7.24E+05 6.98E+05 5.90E+05 
2.51 4.17E+05 4.14E+05 4.40E+05 4.48E+05 5.15E+05 4.09E+05 
3.00 1.96E+05 1.94E+05 2.11E+05 2.69E+05 2.38E+05 2.29E+05 
3.58 7.50E+04 1.16E+05 6.48E+04 5.70E+04 1.02E+05 1.20E+05 
4.27 2.08E+04 4.55E+04 3.07E+04 5.29E+04 3.66E+04 4.82E+04 
5.10 2.08E+04 2.07E+04 2.05E+04 1.63E+04 1.46E+04 3.21E+04 
6.08 1.25E+04 1.24E+04 1.02E+04 4.07E+03 l.lOE+04 2.41E+04 
7.26 4.17E+03 O.OOE+OO 3.41E+03 1.63E+04 O.OOE+OO 4.01E+03 
8.66 1.25E+04 O.OOE+OO O.OOE+OO 4.07E+03 3.66E+03 4.01E+03 
10.33 4.17E+03 O.OOE+OO O.OOE+OO O.OOE+OO O'.OOE+OO O.OOE+OO 
12.33 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
14.71 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
17.55 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
20.94 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
24.98 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
29.81 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
35.56 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
42.43 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
50.63 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
86.00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
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IS min 20 min 
15 20 

dla. 

0.87 4.02E+05 3.25E+05 
1.04 3.66E+05 3.34E+05 
1.24 4.10E+05 3.78E+05 
1.48 5.65E+05 5.71E+05 
1.77 6.31E+05 4.08E+05 
2.11 5.38E+05 4.04E+05 
2.51 4.10E+05 4.17E+05 
3.00 2.38E+05 3.21E+05 
3.58 1.63E+05 1.32E+05 
4.27 1.06E+05 l.OlE+05 
5.10 3.53E+04 7.91E+04 
6.08 3.09E+04 3.95E+04 
7.26 1.32E+04 3.07E+04 
8.66 8.83E+03 3.07E+04 
10.33 O.OOE+00 1.32E+04 
12.33 O.OOE+00 4.39E+03 
14.71 O.OOE+00 8.78E+03 
17.55 O.OOE+00 O.OOE+00 
20.94 O.OOE+00 O.OOE+00 
24.98 O.OOE+00 O.OOE+00 
29.81 O.OOE+00 O.OOE+00 
35.56 O.OOE+00 O.OOE+00 
42.43 O.OOE+00 O.OOE+00 
50.63 O.OOE+00 O.OOE+00 
60.41 O.OOE+00 O.OOE+00 
72.08 O.OOE+00 O.OOE+00 
86.00 O.OOE+00 O.OOE+00 
102.62 O.OOE+00 O.OOE+00 
122.44 O.OOE+00 O.OOE+00 

25 min 30 min 45 min 
25 30 45 

2.29E+05 2.45E+05 1.41E+05 
2.49E+05 2.00E+05 1.29E+05 
3.35E+05 3.00E+05 1.23E+05 
3.10E+05 3.91E+05 1.70E+05 
3.59E+05 3.29E+05 1.65E+05 
3.71E+05 3.08E+05 1.26E+05 
2.57E+05 2.25E+05 1.26E+05 
2.20E+05 2.16E+05 7.64E+04 
1.14E+05 1.16E+05 6.46E+04 
1.14E+05 8.74E+04 2.06E+04 
5.31E+04 7.90E+04 1.76E+04 
4.49E+04 5.41E+04 1.76E+04 
3.27E+04 5.41E+04 1.18E+04 
2.04E+04 1.66E+04 1.18E+04 
2.04E+04 1.25E+04 5.88E+03 
8.16E+03 4.16E+04 2.94E+03 
8.16E+03 4.58E+04 1.18E+04 
8.16E+03 8.32E+03 1.18E+04 
O.OOE+00 8.32E+03 1.47E+04 
O.OOE+00 O.OOE+00 1.18E+04 
O.OOE+00 4.16E+03 5.88E+03 
O.OOE+00 O.OOE+00 8.81E+03 
O.OOE+00 O.OOE+00 2.94E+03 
O.OOE+00 O.OOE+00 O.OOE+00 
O.OOE+00 O.OOE+00 O.OOE+00 
O.OOE+00 O.OOE+00 O.OOE+00 
O.OOE+00 O.OOE+00 O.OOE+00 
O.OOE+00 O.OOE+00 O.OOE+OO 
O.OOE+00 O.OOE+OO O.OOE+OO 
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01/21/88 
Time > 

homog 
-1 

0 min 
0 

1 min 
1 

3 min 
3 

5 min 10 min 
5 10 

dia. 

0.87 6.03E+05 6.73E+05 5.45E+05 4.94E+05 4.89E+05 4.26E+05 
1.04 5.40E+05 7.07E+05 5.78E+05 6.34E+05 3.88E+05 3.77E+05 
1.24 7.98E+05 6.90E+05 7.00E+05 6.62E+05 5.49E+05 5.15E+05 
1.48 8.85E+05 9.64E+05 8.13E+05 9.54E+05 8.77E+05 6.22E+05 
1.77 7.93E+05 8.15E+05 7.62E+05 6.68E+05 6.91E+05 5.78E+05 
2.11 5.69E+05 6.96E+05 6.25E+05 7.30E+05 5.90E+05 5.54E+05 
2.51 3.16E+05 5.13E+05 3.95E+05 4.43E+05 4.59E+05 3.68E+05 
3.00 1.61E+05 2.45E+05 1.65E+05 1.96E+05 2.22E+05 3.23E+05 
3.58 1.15E+05 1.14E+05 9.40E+04 1.29E+05 1.26E+05 1.67E+05 
4.27 4.60E+04 9.12E+04 4.70E+03 5.61E+04 9.07E+04 7.84E+04 
5.10 3.45E+04 1.14E+04 2.35E+04 3.37E+04 3.53E+04 2.45E+04 
6.08 O.OOE+00 5.70E+03 O.OOE+00 1.68E+04 2.52E+04 2.94E+04 
7.26 O.OOE+00 5.70E+03 O.OOE+00 O.OOE+00 5.04E+03 9.80E+03 
8.66 O.OOE+00 5.70E+03 O.OOE+00 5.61E+03 O.OOE+00 4.90E+03 
10.33 O.OOE+00 O.OOE+00 O.OOE+00 O.OOE+00 O.OOE+OO O.OOE+00 
12.33 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
14.71 O.OOE+OO O.OOE+OO O.OOE+OO O.OOÉ+OO O.OOE+OO O.OOE+OO 
17.55 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
20.94 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
24.98 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
29.81 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
35.56 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
42.43 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
50.63 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
86.00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
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15 min 20 min 
15 20 

dla. 

0.87 3.18E+05 2.81E+05 
1.04 2.87E+05 1.71E+05 
1.24 4.19E+05 3.12E+05 
1.48 4.68E+05 4.35E+05 
1.77 3.75E+05 2.55E+05 
2.11 3.93E+05 3.03E+05 
2.51 3.75E+05 2.85E+05 
3.00 2.82E+05 2.68E+05 
3.58 1.50E+05 1.71E+05 
4.27 1.28E+05 1.23E+05 
5.10 4.85E+04 6.59E+04 
6.08 4.85E+04 7.91E+04 
7.26 2.21E+04 2.20E+04 
8.66 4.41E+03 3.07E+04 
10.33 O.OOE+OO 4.39E+03 
12.33 O.OOE+OO O.OOE+OO 
14.71 4.41E+03 4.39E+03 
17.55 O.OOE+OO O.OOE+OO 
20.94 O.OOE+OO O.OOE+OO 
24.98 O.OOE+OO O.OOE+OO 
29.81 4.41E+03 O.OOE+OO 
35.56 O.OOE+OO O.OOE+OO 
42.43 O.OOE+OO O.OOE+OO 
50.63 O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO 
86.00 O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO 

25 min 30 min 45 min 
25 30 45 

1.92E+05 1.26E+05 1.04E+05 
1.59E+05 1.03E+05 7.68E+04 
1.96E+05 1.87E+05 9.05E+04 
2.49E+05 2.33E+05 1.40E+05 
1.96E+05 1.83E+05 8.78E+04 
3.27E+05 2.10E+05 9.60E+04 
1.35E+05 1.56E+05 1.12E+05 
1.71E+05 1.03E+05 6.03E+04 
1.06E+05 6.48E+04 7.95E+04 
9.80E+04 5.34E+04 4.11E+04 
4.49E+04 4.96E+04 3.84E+04 
2.86E+04 4.20E+04 3.29E+04 
2.45E+04 1.91E+04 2.19E+04 
4.49E+04 4.20E+04 1.92E+04 
1.22E+04 7.63E+03 1.92E+04 
2.04E+04 2.67E+04 2.19E+04 
O.OOE+OO 1.14E+04 l.lOE+04 
4.08E+03 7.63E+03 2.74E+03 
4.08E+03 3.81E+03 O.OOE+OO 
O.OOE+OO 3.81E+03 2.74E+03 
O.OOE+OO O.OOE+OO 2.74E+03 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO 2.74E+03 
O.OOE+OO O.OOE+OO 2.74E+03 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
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01/02/88 
Time > 

homog 
-1 

0 min 
0 

1 min 
1 

3 min 
3 

5 min 10 min 
5 10 

dia. 

0.87 6.29E+05 4.76E+05 4.99E+05 5.25E+05 4.75E+05 3.53E+05 
1.04 5.67E+05 4.71E+05 5.10E+05 5.13E+05 3.58E+05 3.37E+05 
1.24 6.54E+05 6.62E+05 5.40E+05 5.94E+05 5.41E+05 3.65E+05 
1.48 7.92E+05 8.97E+05 7.35E+05 7.61E+05 7.35E+05 5.26E+05 
1.77 7.46E+05 7.32E+05 7.27E+05 6.31E+05 5.63E+05 5.06E+05 
2.11 5.04E+05 7.11E+05 5.32E+05 6.47E+05 5.01E+05 4.29E+05 
2.51 3.46E+05 4.43E+05 3.75E+05 4.92E+05 4.42E+05 3.05E+05 
3.00 1.96E+05 2.85E+05 1.95E+05 2.20E+05 2.19E+05 2.21E+05 
3.58 7.50E+04 1.53E+05 1.46E+05 1.18E+05 9.87E+04 1.20E+05 
4.27 1.67E+04 7.86E+04 2.62E+04 8.55E+04 6.58E+04 7.62E+04 
5.10 8.33E+03 2.48E+04 2.62E+04 3.26E+04 1.46E+04 2.81E+04 
6.08 8.33E+03 2.07E+04 1.12E+04 1.22E+04 2.19E+04 2.41E+04 
7.26 8.33E+03 4.14E+03 1.12E+04 O.OOE+OO l.lOE+04 2.01E+04 
8.66 4.17E+03 O.OOE+OO 7.50E+03 O.OOE+OO l.lOE+04 8.03E+03 
10.33 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 7.31E+03 8.03E+03 
12.33 O.OOE+OO O.OOE+OO O.OOE+OO 4.07E+03 3.66E+03 4.01E+03 
14.71 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 3.66E+03 4.01E+03 

17.55 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
20.94 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 4.01E+03 
24.98 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
29.81 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
35.56 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
42.43 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
50.63 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
86.00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
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15 min 20 min 
15 20 

dla. 

0.87 3.09E+05 1.93E+05 
1.04 2.07E+05 1.84E+05 
1.24 2.34E+05 2.508+05 
1,48 3.97E+05 3.51E+05 
1.77 4.15E+05 2.77E+05 
2.11 3.31E+05 2.68E+05 
2.51 2.91E+05 1.49E+05 
3.00 1.77E+05 1.36E+05 
3.58 1.37E+05 7.03E+04 
4.27 6.62E+04 3.07E+04 
5.10 3.09E+04 2.20E+04 
6.08 2.65E+04 2.20E+04 
7.26 2.65E+04 1.76E+04 
8.66 1.77E+04 1.32E+04 
10.33 2.21E+04 8.78E+03 
12.33 8.83E+03 4.39E+03 
14.71 1.32E+04 1.32E+04 
17.55 4.41E+03 4.39E+03 
20.94 8.83E+03 4.39E+03 
24.98 O.OOE+00 O.OOE+00 
29.81 O.OOE+00 8.78E+03 
35.56 O.OOE+00 O.OOE+00 
42.43 O.OOE+00 O.OOE+00 
50.63 O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO 
86.00 O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO 

25 min 30 min 45 min 
25 30 45 

1.55E+05 1.79E+05 1.32E+05 
1.63E+05 1.29E+05 1.18E+05 
2.29E+05 1.21E+05 1.41E+05 
2.73E+05 2.50E+05 1.53E+05 
2.61E+05 1.41E+05 1.35E+05 
2.20E+05 9.98E+04 1.03E+05 
1.55E+05 9.15E+04 1.03E+05 
1.02E+05 2.08E+04 2.35E+04 
7.76E+04 3.33E+04 2.64E+04 
2.45E+04 2.08E+04 2.64E+04 
1.63E+04 1.66E+04 8.81E+03 
1.22E+04 4.16E+03 5.88E+03 
2.04E+04 O.OOE+OO 2.94E+03 
8.16E+03 8.32E+03 8.81E+03 
8.16E+03 O.OOE+OO 2.94E+03 
1.63E+04 4.16E+03 O.OOE+OO 
4.08E+03 O.OOE+OO 5.88E+03 
1.22E+04 1.25E+04 5.88E+03 
1.22E+04 8.32E+03 2.94E+03 
4.08E+03 8.32E+03 5.88E+03 
8.16E+03 4.16E+03 2.94E+03 
4.08E+03 8.32E+03 2.94E+03 
O.OOE+OO O.OOE+OO 2.94E+03 
O.OOE+OO 4.16E+03 2.94E+03 
O.OOE+OO O.OOE+OO 5.88E+03 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
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01/05/88 
Time > 

homog 
-1 

0 min 
0 

1 min 
1 

3 min 
3 

5 min 10 min 
5 10 

dla. 

0.87 7.58E+05 5.79E+05 4.98E+05 5.70E+05 4.24E+05 4.24E+05 
1.04 7.04E+05 6.49E+05 5.35E+05 5.58E+05 4.64E+05 3.93E+05 
1.24 8.87E+05 6.66E+05 5.69E+05 7.33E+05 5.63E+05 5.56E+05 
1.48 l.llE+06 8.93TE+05 8.32E+05 8.83E+05 7.79E+05 6.09E+05 
1.77 1.02E+06 8.81E+05 6.95E+05 8.26E+05 6.58E+05 4.99E+05 
2.11 6.46E+05 6.99E+05 5.56E+05 6.59E+05 5.37E+05 5.69E+05 
2.51 4.62E+05 4.88E+05 4.12E+05 4.84E+05 3.51E+05 4.63E+05 
3.00 2.71E+05 2.94E+05 2.11E+05 3.42E+05 2.19E+05 2.38E+05 
3.58 6.25E+04 1.65E+05 9.20E+04 1.42E+05 9.50E+04 1.50E+05 
4.27 3.75E+04 4.96E+04 3.75E+04 6.51E+04 6.58E+04 8.83E+04 
5.10 3.33E+04 4.14E+03 1.36E+04 2.04E+04 7.31E+03 4.85E+04 
6.08 8.33E+03 4.14E+03 1.02E+04 2.04E+04 2.19E+04 3.09E+04 
7.26 8.33E+03 4.14E+03 1.36E+04 4.07E+03 l.lOE+04 1.77E+04 
8.66 O.OOE+OO 4.14E+03 3.41E+03 O.OOE+OO O.OOE+OO 8.83E+03 
10.33 4.17E+03 O.OOE+OO O.OOE+OO O.OOE+OO 3.66E+03 1.32E+04 
12.33 4.17E+03 4.14E+03 O.OOE+OO O.OOE+OO O.OOE+OO 4.41E+03 
14.71 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
17.55 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
20.94 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
24.98 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
29.81 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
35.56 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
42.43 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO. 
50.63 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
86.00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
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15 min 20 min 
15 20 

dla. 

0.87 2.34E+05 1.93E+05 
1.04 2.47E+05 1.76E+05 
1.24 2.07E+05 2.42E+05 
1.48 3.40E+05 2.46E+05 
1.77 3.18E+05 2.24E+05 
2.11 3.00E+05 2.28E+05 
2.51 1.99E+05 1.19E+05 
3.00 2.07E+05 1.49E+05 
3.58 1.06E+05 7.03E+04 
4.27 6.62E+04 5.71E+04 
5.10 3.53E+04 3.95E+04 
6.08 2.21E+04 2.20E+04 
7.26 3.53E+04 2.20E+04 
8.66 2.21E+04 8.78E+03 

10.33 8.83E+03 1.76E+04 
12.33 8.83E+03 4.39E+03 
14.71 1.77E+04 8.78E+03 
17.55 4.41E+03 8.78E+03 
20.94 4.41E+03 1.76E+04 
24.98 O.OOE+00 O.OOE+00 
29.81 O.OOE+00 O.OOE+00 
35.56 O.OOE+00 O.OOE+00 
42.43 O.OOE+00 O.OOE+00 
50.63 O.OOE+00 O.OOE+00 
60.41 O.OOE+00 O.OOE+00 
72.08 O.OOE+OO O.OOE+00 
86.00 O.OOE+OO O.OOE+OO 

102.62 O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO 

25 min 30 min 45 min 
25 30 45 

1.02E+05 1.29E+05 1.06E+05 
1.22E+05 1.21E+05 8.22E+04 
1.14E+05 1.41E+05 1.34E+05 
2.41E+05 1.83E+05 1.47E+05 
1.55E+05 1.54E+05 9.59E+04 
1.71E+05 1.41E+05 8.22E+04 
6.94E+04 1.21E+05 1.13E+05 
7.35E+04 4.99E+04 6.51E+04 
6.12E+04 4.99E+04 4.80E+04 
3.27E+04 4.16E+04 3.08E+04 
2.45E+04 1.66E+04 2.40E+04 
8.16E+03 8.32E+03 1.37E+04 
8.16E+03 2.50E+04 1.03E+04 
8.16E+03 1.25E+04 1.37E+04 
1.22E+04 2.50E+04 3.43E+03 
4..08E+03 1.25E+04 1.03E+04 
1.22E+04 4.16E+03 3.43E+03 
4.08E+03 8.32E+03 3.43E+03 
4.08E+03 1.66E+04 3.43E+03 
O.OOE+OO O.OOE+OO 6.85E+03 
4.08E+03 4.16E+03 O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO 4.16E+03 O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
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487 

01/07/88 
Time > 

homog 
-1 

0 min 
0 

1 min 
1 

3 min 
3 

5 min 
5 

10 min 
10 

dia. 

0.87 6.83E+05 7.57E+05 5.59E+05 5.62E+05 5.34E+05 4.07E+05 
1.04 7.67E+05 7.98E+05 5.93E+05 6.19E+05 5.41E+05 4.17E+05 
1.24 7.37E+05 8.31E+05 6.82E+05 7.81E+05 7.24E+05 6.27E+05 
1.48 9.62E+05 1.13E+06 8.32E+05 1.04E+06 9.50E+05 7.20E+05 
1.77 9.62E+05 1.08E+06 6.92E+05 7.86E+05 7.49E+05 5.64E+05 
2.11 6.79E+05 7.69E+05 6.14E+05 6.84E+05 6.47E+05 6.57E+05 
2.51 3.96E+05 4.38E+05 3.95E+05 4.60E+05 4.46E+05 4.51E+05 
3.00 2.00E+05 1.99E+05 2.08E+05 2.36E+05 2.19E+05 3.04E+05 
3.58 1.08E+05 8.68E+04 9.20E+04 1.06E+05 1.17E+05 1.47E+05 
4.27 3.75E+04 2.89E+04 2.73E+04 4.88E+04 3.29E+04 1.18E+05 
5.10 2.50E+04 8.27E+03 6.82E+03 2.44E+04 1.83E+04 3.92E+04 
6.08 O.OOE+OO 1.24E+04 1.02E+04 4.07E+03 l.lOE+04 1.96E+04 

7.26 4.17E+03 8.27E+03 O.OOE+OO 4.07E+03 7.31E+03 1.47E+04 
8.66 O.OOE+OO O.OOE+OO O.OOE+OO 8.14E+03 7.31E+03 4.90E+03 
10.33 O.OOE+OO O.OOE+OO O.OOE+OO 4.07E+03 O.OOE+OO 4.90E+03 
12.33 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
14.71 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 4.90E+03 
17.55 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
20.94 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
24.98 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
29.81 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
35.56 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
42.43 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
50.63 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
86.00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
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87 
04 
24 
48 
77 
11 
51 
00 
58 
27 
10 
08 
26 
66 
33 
33 
71 
55 
94 
98 
81 
56 
43 
63 
41 
08 
00 
62 

15 min 20 min 25 min 30 min 45 min 
15 20 25 30 45 

6.18E+05 2.72E+05 2.25E+05 1.79E+05 1.44E+05 
4.99E+05 2.59E+05 1.63E+05 2.08E+05 1.38E+05 
6.31E+05 4.04E-I05 2.33Ef05 2.25E+05 1.35E+05 
7.99E+05 4.88E+05 3.10E+05 2.50E+05 1.65E+05 
6.66E+05 3.86E+05 2.65E+05 2.50E+05 1.62E+05 
6.40E+05 4.57E+05 2.98E+05 2.50E+05 1.35E+05 
4.24E+05 3.21E+05 2.49E+05 1.91E+05 9.70E+04 
3.31E+05 3.25E+05 2.16E+05 1.75E+05 9.99E+04 
1.99E+05 1.36E+05 l.lOE+05 1.25E+05 6.46E+04 
1.32E+05 1.19E+05 1.22E+05 5.82E+04 2.35E+04 
5.30E+04 8.34E+04 4.49E+04 2.50E+04 2.64E+04 
2.21E+04 3.51E+04 4.90E+04 5.82E+04 2.35E+04 
1.32E+04 2.20E+04 3.67E+04 2.08E+04 1.18E+04 
4.41E+03 1.76E+04 2.86E+04 3.33E+04 2.35E+04 
4.41E+03 8.78E+03 2.04E+04 3.74E+04 1.18E+04 
4.41E+03 4.39E+03 1.22E+04 1.66E+04 8.81E+03 
4.41E+03 O.OOE+OO O.OOE+OO 4.16E+03 1.47E+04 
O.OOE+OO 4.39E+03 1.63E+04 4.16E+03 1.18E+04 
O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 2.94E+03 
O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 2.94E+03 
O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 5.88E+03 
O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 



www.manaraa.com

489 

01/26/88 
Time > 

homog 
-1 

0 min 
0 

1 min 
1 

3 min 
3 

5 min 
5 

10 min 
10 

dia. 

0.87 5.50E+05 6.10E+05 5.50E+05 4.71E+05 4.64E+05 3.43E+05 
1.04 6.36E+05 5.93E+05 4.47E+05 5.72E+05 6.15E+05 3.58E+05 
1.24 6.21E+05 7.01E+05 5.73E+05 6.29E+05 8.06E+05 4.46E+05 
1.48 8.29E+05 8.78E+05 8.32E+05 8.25E+05 9.22E+05 5.49E+05 
1.77 7.63E+05 7.53E+05 7.66E+05 9.26E+05 7.01E+05 5.24E+05 
2.11 5.04E+05 7.07E+05 5.55E+05 7.52E+05 6.25E+05 5.54E+05 
2.51 3.82E+05 4.28E+05 4.09E+05 6.23E+05 3.88E+05 4.26E+05 
3.00 1.73E+05 1.88E+05 1.93E+05 4.32E+05 2.42E+05 3.58E+05 
3.58 5.09E+04 9.12E+04 1.03E+05 1.91E+05 1.06E+05 1.91E+05 
4.27 3.56E+04 2.85E+04 3.76E+04 l.OlE+05 6.55E+04 9.80E+04 
5.10 1.02E+04 1.14E+04 1.41E+04 2.24E+04 5.04E+03 2.94E+04 
6.08 O.OOE+OO 1.14E+04 O.OOE+OO 5.61E+03 O.OOE+OO 4.90E+03 
7.26 O.OOE+OO O.OOE+OO O.OOE+OO 2.81E+04 5.04E+03 1.47E+04 
8.66 1.53E+04 O.OOE+OO O.OOE+OO O.OOE+OO 5.04E+03 O.OOE+OO 
10.33 O.OOE+OO O.OOE+OO O.OOE+OO 5.61E+03 O.OOE+OO O.OOE+OO 
12.33 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
14.71 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
17.55 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
20.94 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
24.98 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
29.81 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
35.56 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
42.43 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
50.63 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
86.00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
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490 

15 min 20 min 
15 20 

dla. 

0.87 2.47E+05 2.37E+05 
1.04 3.04E+05 2.59E+05 
1.24 2.87E+05 3.12E+05 
1.48 4.46E+05 3.07E+05 
1.77 3.66E+05 2.72E+05 
2.11 3.09E+05 2.24E+05 
2,51 3.62E+05 2.46E+05 
3.00 2.74E+05 1.98E+05 
3.58 1.59E+05 1.49E+05 
4.27 1.28E+05 1.19E+05 
5.10 l.OlE+05 7.91E+04 
6.08 5.74E+04 1.76E+04 
7.26 3.53E+04 5.71E+04 
8.66 8.83E+03 2.20E+04 

10.33 1.32E+04 4.83E+04 
12.33 4.41E+03 8.78E+03 
14.71 O.OOE+00 O.OOE+00 
17.55 4.41E+03 O.OOE+00 
20.94 O.OOE+00 O.OOE+00 
24.98 O.OOE+00 O.OOE+00 
29.81 O.OOE+00 O.OOE+00 
35.56 O.OOE+00 O.OOE+00 
42.43 O.OOE+00 O.OOE+00 
50.63 O.OOE+00 O.OOE+00 
60.41 O.OOE+00 O.OOE+00 
72.08 O.OOE+00 O.OOE+00 
86.00 O.OOE+00 O.OOE+00 
102.62 O.OOE+00 O.OOE+00 
122.44 O.OOE+00 O.OOE+00 

25 min 30 min 45 min 
25 30 45 

1.76E+05 1.37E+05 1.26E+05 
1.51E+05 1.18E+05 1.15E+05 
2.25E+05 2.03E+05 1.41E+05 
3.22E+05 2.85E+05 1.32E+05 
1.76E+05 1.90E+05 1.26E+05 
2.29E+05 1.41E+05 1.38E+05 
2.00E+05 1.73E+05 6.17E+04 
1.27E+05 1.08E+05 8.52E+04 
7.76E+04 1.05E+05 6.17E+04 
5.71E+04 8.50E+04 5.58E+04 
7.76E+04 8.50E+04 3.82E+04 
3.67E+04 3.92E+04 3.23E+04 
1.63E+04 2.94E+04 2.35E+04 
4.08E+03 1.31E+04 2.35E+04 
1.22E+04 3.60E+04 1.76E+04 
8.16E+03 2.62E+04 2.06E+04 
1.22E+04 9.81E+03 8.81E+03 
O.OOE+00 O.OOE+00 2.35E+04 
O.OOE+00 O.OOE+00 O.OOE+00 
O.OOE+00 O.OOE+00 O.OOE+00 
4.08E+03 O.OOE+00 5.88E+03 
O.OOE+00 O.OOE+00 O.OOE+00 
O.OOE+00 O.OOE+00 O.OOE+00 
O.OOE+00 O.OOE+00 O.OOE+00 
O.OOE+00 O.OOE+00 O.OOE+00 
O.OOE+00 O.OOE+00 O.OOE+00 
O.OOE+00 O.OOE+00 O.OOE+00 
O.OOE+00 O.OOE+00 O.OOE+00 
O.OOE+00 O.OOE+00 O.OOE+00 



www.manaraa.com

00+300*0 00+300*0 00+300*0 00+300*0 00+300*0 00+300*0 tt'ZZT 
00+300*0 00+300*0 00+300*0 00+300*0 00+300*0 00+300*0 39*201 
00+300*0 00+300*0 00+300*0 00+300*0 00+300*0 00+300*0 00*98 
00+300*0 00+300*0 00+300*0 00+300*0 00+300*0 00+300*0 %0'ZL 
00+300*0 00+300*0 00+300*0 00+300*0 00+300*0 00+300*0 Tt*09 
00+300*0 00+300*0 00+300*0 00+300*0 00+300*0 00+300*0 £9"OS 
00+300*0 00+300*0 00+300*0 00+300*0 00+300*0 00+300*0 Et*2t 
00+300*0 00+300*0 00+300*0 00+300*0 00+300*0 00+300*0 9G'GE 
00+300*0 00+300*0 00+300*0 00+300*0 00+300*0 00+300*0 18*63 
00+300*0 00+300*0 00+300*0 00+300*0 00+300*0 00+300*0 86*t3 
00+300*0 00+300*0 00+300*0 00+300*0 00+300*0 00+300*0 1/6*03 
00+300*0 00+300*0 00+300*0 00+300*0 00+300*0 00+300*0 GG'Z.1 
00+300*0 00+300*0 00+300*0 00+300*0 00+300*0 00+300*0 
00+300*0 00+300*0 00+300*0 00+300*0 00+300*0 00+300*0 EE*31 
00+300*0 00+300*0 00+300*0 00+300*0 00+300*0 00+300*0 EE*01 
£0+306* <7 00+300*0 £0+3X9*6 00+300*0 E0+306 G 00+300*0 99*8 
£0+308*6 £0+3170'G 00+300*0 00+300*0 £0+30^*G 00+300*0 93'f 
^70+3^76*3 tO+a3G'3 ^70+389'I 00+300 0 £0+30^ G 00+300 0 80'9 
^70+35^7'3 l70+aE5'E ^0+3££'£ 170+3GE'3 ^70+3<7T'T %0+3Gt'E 01'G 
tO+a%8'Z 170+3/0'6 90+3%9'G E0+30A'l7 170+331'6 170+309*17 Z3'l7 
G0+3Z9*I G0+393 * I GO+363'T 170+30^'6 GO+3^%'% G0+3GT'X 8G*£ 
G0+3E3'E G0+a33'3 GO+396'I G0+3G9'T G0+3G17'3 G0+3I9'I 00'£ 
G0+389'£ G0+36G' 17 G0+3E%'% G0+3G6'£ G0+3EX'G G0+39X'£ XG'3 
GO+a%G'G GO+306'G G0+30£*Z G0+3G3'9 GO+396'9 GO+369'G XX'3 
G0+386*G G0+aX6*9 G0+a89'9 60+339 * A GO+aGX'8 G0+a£6*Z LL'I 
50+333*9 50+316*8 50+3^75*6 S0+3EX 8 50+3<79*6 50+358*8 8%*X 
SO+aSX*G 50+3617*5 50+339 9 50+300*6 50+306*9 50+386*6 173'X 
50+366 * £ 50+388 * £ 50+at£ "9 50+386*5 50+360*6 50+3017*5 VO'J 
50+393'^7 50+368*^7 50+3176*17 50+3517'5 50+a£6'9 50+aEO'9 68'0 

•BTp 
OX 5 £ X 0 X-
OX uxm g ufni £ u-pin % ufui o aomoq 

< aniTI 
88/83/XO 
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492 

15 min 20 min 
15 20 

dla. 

0.87 3.18E+05 2.81E+05 
1.04 2.87E+05 1.71E+05 
1.24 4.19E+05 3.12E+05 
1.48 4.68E+05 4.35E+05 
1.77 3.75E+05 2.55E+05 
2.11 3.93E+05 3.03E+05 
2.51 3.75E+05 2.85E+05 
3.00 2.82E+05 2.68E+05 
3.58 1.50E+05 1.71E+05 
4.27 1.28E+05 1.23E+05 
5.10 4.85E+04 6.59E+04 
6.08 4.85E+04 7.91E+04 
7.26 2.21E+04 2.20E+04 
8.66 4.41E+03 3.07E+04 

10.33 O.OOE+OO 4.39E+03 
12.33 O.OOE+OO O.OOE+OO 
14.71 4.41E+03 4.39E+03 
17.55 O.OOE+OO O.OOE+OO 
20.94 O.OOE+OO O.OOE+OO 
24.98 O.OOE+OO O.OOE+OO 
29.81 4.41E+03 O.OOE+OO 
35.56 O.OOE+OO O.OOE+OO 
42.43 O.OOE+OO O.OOE+OO 
50.63 O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO 
86.00 O.OOE+OO O.OOE+OO 

102.62 O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO 

25 min 30 min 45 min 
25 30 45 

1.92E+05 1.26E+05 1.04E+05 
1.59E+05 1.03E+05 7.68E+04 
1.96E+05 1.87E+05 9.05E+04 
2.49E+05 2.33E+05 1.40E+05 
1.96E+05 1.83E+05 8.78E+04 
3.27E+05 2.10E+05 9.60E+04 
1.35E+05 1.56E+05 1.12E+05 
1.71E+05 1.03E+05 6.03E+04 
1.06E+05 6.48E+04 7.95E+04 
9.80E+04 5.34E+04 4.11E+04 
4.49E+04 4.96E+04 3.84E+04 
2.8.6E+04 4.20E+04 3.29E+04 
2.45E+04 1.91E+04 2.19E+04 
4.49E+04 4.20E+04 1.92E+04 
1.22E+04 7.63E+03 1.92E+04 
2.04E+04 2.67E+04 2.19E+04 
O.OOE+OO 1.14E+04 l.lOE+04 
4.08E+03 7.63E+03 2.74E+03 
4.08E+03 3.81E+03 O.OOE+OO 
O.OOE+OO 3.81E+03 2.74E+03 
O.OOE+OO O.OOE+OO 2.74E+03 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO 2.74E+03 
O.OOE+OO O.OOE+OO 2.74E+03 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 



www.manaraa.com

493 

02/11/88 
Time— 

homog 0 min 1 min 3 min 5 min 10 min 
-1 0 1 3 5 10 

dia. 

0.87 6.57E+05 6.19E+05 5.37E+05 5.20E+05 5.14E+05 3.38E+05 
1.04 5.91E+05 5.80E+05 5.59E+05 4.55E+05 4.59E+05 3.23E+05 
1.24 8.34E+05 7.23E+05 6.77E+05 6.22E+05 5.39E+05 4.80E+05 
1.48 1.14E+06 9.78E+05 7.68E+05 9.11E+05 7.81E+05 5.24E+05 
1.77 8.67E+05 8.02E+05 7.31E+05 7.12E+05 7.16E+05 5.39E+05 
2.11 7.22E+05 7.10E+05 6.12E+05 6.67E+05 5.75E+05 6.42E+05 
2.51 3.94E+05 4.11E+05 3.60E+05 4.87E+05 4.44E+05 4.75E+05 
3.00 2.76E+05 2.22E+05 2.74E+05 3.14E+05 2.87E+05 3.48E+05 
3.58 1.31E+05 1.04E+05 1.07E+05 1.86E+05 1.31E+05 1.52E+05 
4.27 7.88E+04 1.30E+04 2.15E+04 1.09E+05 6.55E+04 1.18E+05 
5.10 3.94E+04 1.30E+04 1.07E+04 1.92E+04 5.04E+03 4.90E+04 
6.08 O.OOE+OO 1.96E+04 1.07E+04 3.21E+04 l.OlE+04 1.96E+04 
7,26 6.57E+03 O.OOE+OO 5.37E+03 O.OOE+OO O.OOE+OO 4.90E+03 
8.66 l,31E+04 1.30E+04 O.OOE+OO 6.41E+03 1.51E+04 O.OOE+OO 
10.33 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 4.90E+03 
12.33 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
14.71 O.OOE+OO 6,52E+03 O.OOE+OO O.OOE+OO O.OOE+OO 4.90E+03 
17.55 O.OOE+OO 1.96E+04 5.37E+03 6.41E+03 5.04E+03 1.47E+04 
20.94 1.31E+04 1.30E+04 2.15E+04 2.57E+04 2.02E+04 9.80E+03 
24.98 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
29.81 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
35.56 O.OOE+OO O.OOE+OO Ô.OOE+00 O.OOE+OO O.OOE+OO O.OOE+OO 
42.43 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
50.63 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
86.00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
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dla. 

15 min 
15 

20 min 
20 

25 min 
25 

30 min 
30 

45 min 
45 

0.87 3.61E+05 2.04E+05 
1.04 2.96E+05 2.09E+05 
1.24 3.77E+05 3.00E+05 
1.48 4.90E+05 3.33E+05 
1.77 4.96E+05 3.54E+05 
2.11 4.20B+05 4.29E+05 
2.51 3.77E+05 4.13E+05 
3.00 2.59E+05 2.79E+05 
3.58 1.62E+05 1.45E+05 
4.27 8.08E+04 9.66E+04 
5.10 6.47E+04 6.97E+04 
6.08 2.16E+04 2.68E+04 
7.26 2.69E+04 3.22E+04 
8.66 5.39E+03 3.22E+04 
10.33 O.OOE+OO 5.36E+03 
12.33 1.08E+04 5.36E+03 
14.71 O.OOE+OO O.OOE+OO 
17.55 1.62E+04 5.36E+03 
20.94 2.16E+04 2.68E+04 
24.98 O.OOE+OO O.OOE+OO 
29.81 O.OOE+OO O.OOE+OO 
35.56 O.OOE+OO O.OOE+OO 
42.43 O.OOE+OO O.OOE+OO 
50.63 O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO 
86.00 O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO 

3.67E+04 1.53E+05 5.49E+04 
5.71E+04 1.37E+05 5.21E+04 
2.29E+05 2.36E+05 7.41E+04 
2.29E+05 2.71E+05 l.OlE+05 
2.12E+05 2.02E+05 1.10E+05 
2.69E+05 1.79E+05 1.12E+05 
1.96E+05 1.91E+05 6.03E+04 
1.22E+05 1.56E+05 4.39E+04 
1.02E+05 1.07E+05 4.66E+04 
8.16E+04 6.48E+04 3.02E+04 
4.90E+04 4.20E+04 3.02E+04 
4.90E+04 6.87E+04 1.65E+04 
2.45E+04 2.29E+04 1.92E+04 
2.04E+04 3.43E+04 1.37E+04 
1.22E+04 2.29E+04 8.23E+03 
1.63E+04 3.81E+04 1.65E+04 
1.22E+04 7.63E+03 l.lOE+04 
1.63E+04 7.63E+03 l.lOE+04 
2.04E+04 3.81E+03 O.OOE+OO 
O.OOE+OO O.OOE+OO 5.49E+03 
O.OOE+OO O.OOE+OO 2.74E+03 
O.OOE+OO 3.81E+03 O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
0.OOE+OO 0.OOE+OO. 0.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
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06/23/88 
Time > 

homog 0 min 3 min 5 min 10 min 
-1 0 3 5 10 

dla. 

0.87 6.96E+05 4.82E+05 4.03E+05 4.11E+05 2.94E+05 
1.04 5.91E+05 5.28E+05 3.68E+05 3.53E+05 2.11E+05 
1.24 9.78E+05 6.39E+05 5.72E+05 4.87E+05 4.21E+05 
1.48 1.08E+06 1.06E+06 8.05E+05 5.54E+05 4.85E+05 
1.77 8.86E+05 8.80E+05 5.47E+05 4.69E+05 3.48E+05 
2.11 6.76E+05 6.91E+05 5.42E+05 5.85E+05 4.26E+05 
2.51 4.14E+05 4.89E+05 3.03E+05 4.78E+05 3.33E+05 
3.00 2.95E+05 3.65E+05 2.39E+05 2.86E+05 2.45E+05 
3.58 8.53E+04 1.37E+05 1.09E+05 1.34E+05 1.76E+05 
4.27 6.57E+04 1.17E+05 7.46E+04 1.29E+05 1.23E+05 
5.10 2.63E+04 2.61E+04 2.98E+04 5.36E+04 7.35E+04 
6.08 1.31E+04 2.61E+04 4.97E+03 3.13E+04 7.35E+04 
7.26 O.OOE+OO 6.52E+03 1.49E+04 1.79E+04 2.45E+04 
8.66 6.57E+03 O.OOE+OO O.OOE+OO 4.46E+03 1.96E+04 
10.33 6.57E+03 O.OOE+OO O.OOE+OO 4.46E+03 4.90E+03 
12.33 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 4.90E+03 
14.71 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 1.47E+04 
17.55 3.28E+04 6.52E+03 4.97E+03 4.46E+03 3.43E+04 
20.94 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
24.98 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
29.81 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
35.56 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
42.43 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
50.63 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
86.00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
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15 min 20 min 
15 20 

dla. 

0.87 1.99E+05 8.98E+04 
1.04 1.59E+05 1.17E+05 
1.24 2.12E+05 1.80E+05 
1.48 2.91E+05 1.97E+05 
1.77 2.25E+05 1.42E+05 
2.11 2.43E+05 1.80E+05 
2.51 2.60E+05 1.24E+05 
3.00 1.99E+05 7.25E+04 
3.58 l.lOE+05 7.60E+04 
4.27 l.OlE+05 4.14E+04 
5.10 6.18E+04 4.49E+04 
6.08 5.30E+04 1.38E+04 
7.26 3.97E+04 1.38E+04 
8.66 2.65E+04 2.76E+04 

10.33 2.21E+04 1.04E+04 
12.33 O.OOE+OO 6.91E+03 
14.71 1.32E+04 1.04E+04 
17.55 1.77E+04 2.76E+04 
20.94 8.83E+03 1.04E+04 
24.98 O.OOE+OO 6.91E+03 
29.81 O.OOE+OO 6.91E+03 
35.56 O.OOE+OO O.OOE+OO 
42.43 O.OOE+OO O.OOE+OO 
50.63 O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO 
86.00 O.OOE+OO O.OOE+OO 

102.62 O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO 

25 min 30 min 45 min 
25 30 45 

1.54E+05 9.81E+04 4.12E+04 
8.02E+04 1.05E+05 4.84E+04 
1.28E+05 8.83E+04 7.75E+04 
1.12E+05 1.41E+05 6.29E+04 
1.25E+05 1.08E+05 7.26E+04 
1.09E+05 9.48E+04 3.87E+04 
8.34E+04 8.18E+04 3.39E+04 
5.13E+04 5.89E+04 7.26E+03 
2.57E+04 3.92E+04 7.26E+03 
3.21E+04 4.25E+04 7.26E+03 
1.93E+04 9.81E+03 4.84E+03 
1.28E+04 3.27E+04 2.42E+03 
2.25E+04 1.96E+04 9.68E+03 
6.42E+03 1.64E+04 4.84E+03 
3.21E+03 6.54E+03 1.45E+04 
3.21E+03 9.81E+03 4.84E+03 
O.OOE+OO 3.27E+03 2.42E+03 
1.28E+04 1.64E+04 4.84E+03 
6.42E+03 O.OOE+OO 2.42E+03 
O.OOE+OO O.OOE+OO 7.26E+03 
6.42E+03 O.OOE+OO 2.42E+03 
6.42E+03 O.OOE+OO O.OOE+OO 
6.42E+03 O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO 2.42E+03 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO 2.42E+03 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
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08/09/88 
Time > 

homog 0 min 3 min 5 min 10 min 
.1 0 3 5 10 

dla. 

0.87 6.83E+05 6.45E+05 5.64E+05 4.03E+05 4.48E+05 
1.04 6.76E+05 6.91E+05 5.45E+05 4.49E+05 3.54E+05 
1.24 8.99E+05 8.54E+05 6.80E+05 5.44E+05 4.81E+05 
1.48 1.19E+06 1.04E+06 8.98E+05 6.25E+05 6.36E+05 
1.77 1.14E+06 1.02E+06 8.34E+05 5.09E+05 5.31E+05 
2.11 1.23E+06 1.22E+06 8.47E+05 6.55E+05 6.25E+05 
2.51 6.76E+05 8.21E+05 6.73E+05 5.24E+05 6.31E+05 
3.00 4.00E+05 5.34E+05 4.68E+05 3.83E+05 3.54E+05 
3.58 1.25E+05 2.87E+05 2.89E+05 2.47E+05 2.77E+05 
4.27 5.91E+04 1.04E+05 1.41E+05 2.37E+05 1.77E+05 
5.10 3.28E+04 3.91E+04 8.34E+04 6.55E+04 6.64E+04 
6.08 2.63E+04 2.61E+04 4.49E+04 6.05E+04 4.43E+04 
7.26 6.57E+03 O.OOE+OO 1.92E+04 l.OlE+04 5.53E+03 
8.66 O.OOE+OO O.OOE+OO O.OOE+OO 1.51E+04 1.66E+04 
10,33 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO l.llE+04 
12.33 O.OOE+OO O.OOE+OO 1.28E+04 1.51E+04 5.53E+03 
14.71 O.OOE+OO O.OOE+OO O.OOE+OO 5.04E+03 5.53E+03 
17.55 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
20.94 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
24.98 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
29,81 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
35.56 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
42.43 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
50.63 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
86.00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
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87 
04 
24 
48 
77 
11 
51 
00 
58 
27 
10 
08 
26 
66 
33 
33 
71 
55 
94 
98 
81 
56 
43 
63 
41 
08 
00 
62 

15 min 
15 

20 min 25 min 
20 25 

30 min 
30 

45 min 
45 

2.67E+05 
2.96E+05 
3.49E+05 
4.51E+05 
4.37E+05 
5.48E+05 
4.37E+05 
3.01E+05 
2.62E+05 
1.84E+05 
1.21E+05 
3.88E+04 
2.43E+04 
2.43E+04 
2.43E+04 
3.88E+04 
9.70E+03 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
0.OOE+00 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 

1.69E+05 
1.89E+05 
3.02E+05 
4.03E+05 
2.82E+05 
2.54E+05 
2.58E+05 
2.82E+05 
1.21E+05 
1.13E+05 
5.24E+04 
7.25E+04 
3.62E+04 
4.43E+04 
2.82E+04 
1.21E+04 
8.05E+03 
8.05E+03 
4.03E+03 
4.03E+03 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 

9.36E+04 
1.05E+05 
1.95E+05 
2.73E+05 
1.87E+05 
2.36E+05 
1.68E+05 
1.57E+05 
1.46E+05 
8.61E+04 
6.74E+04 
4.12E+04 
4.49E+04 
2.99E+04 
7.49E+03 
2.25E+04 
1.87E+04 
1.50E+04 
1.50E+04 
1.12E+04 
O.OOE+OO 
3.74E+03 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 

2.56E+05 
1.65E+05 
2.15E+05 
3.16E+05 
2.61E+05 
2.38E+05 
1.88E+05 
1.56E+05 
l.OlE+05 
6.86E+04 
5.49E+04 
4.57E+04 
5.49E+04 
3.20E+04 
O.OOE+OO 
1.37E+04 
2.29E+04 
9.15E+03 
4.57E+03 
O.OOE+OO 
4.57E+03 
9.15E+03 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 

8.49E+04 
6.69E+04 
1.03E+05 
8.74E+04 
1.16E+05 
7.71E+04 
7.46E+04 
3.09E+04 
2.83E+04 
2.31E+04 
2.06E+04 
1.29E+04 
5.14E+03 
7.71E+03 
2.57E+03 
1.03E+04 
2.57E+03 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
2.57E+03 
0.OOE+00 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
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06/21/88 
Time > 

homog 0 mln 
-1 0 

dla. 

0.87 6.96E+05 6.65E+05 
1.04 8.34E+05 5.80E+05 
1.24 8.21E+05 9.91E+05 
1.48 1.27E+06 1.24E+06 
1.77 1.05E+06 8.93E+05 
2.11 9.98E+05 9.91E+05 
2.51 7.42E+05 6.97E+05 
3.00 4.40E+05 3.13E+05 
3.58 1.44E+05 1.56E+05 
4.27 9.19E+04 3.91E+04 
5.10 3.28E+04 2.61E+04 
6.08 2.63E+04 6.52E+03 
7.26 6.57E+03 6.52E+03 
8.66 3.28E+04 1.96E+04 
10.33 1.31E+04 2.61E+04 
12.33 O.OOE+OO O.OOE+OO 
14.71 O.OOE+OO O.OOE+OO 
17.55 O.OOE+OO O.OOE+OO 
20.94 6.57E+03 O.OOE+OO 
24.98 O.OOE+OO O.OOE+OO 
29.81 O.OOE+OO O.OOE+OO 
35.56 O.OOE+OO O.OOE+OO 
42.43 O.OOE+OO O.OOE+OO 
50.63 O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO 
86.00 O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO 

3 mln 5 mln 10 mln 
3 5 10 

.54E+05 3.28E+05 2.40E+05 

.20E+05 3.34E+05 3.14E+05 

.95E+05 6.16E+05 3.68E+05 

.40E+05 6.91E+05 5.29E+05 

.27E+05 6.97E+05 4.12E+05 

.18E+05 6.39E+05 4.41E+05 

.16E+05 4.09E+05 3.58E+05 

.72E+05 2.76E+05 3.33E+05 

.35E+05 1.56E+05 2.30E+05 

.34E+04 1.32E+05 1.37E+05 

.21E+04 8.06E+04 1.13E+05 

.57E+04 2.30E+04 7.84E+04 

.92E+04 1.15E+04 4.41E+04 

.41E+03 O.OOE+OO 2.94E+04 

.OOE+00 1.15E+04 4.90E+03 

.OOE+00 5.76E+03 9.80E+03 

.OOE+00 O.OOE+OO O.OOE+OO 

.28E+04 2.88E+04 2.94E+04 

.92E+04 3.46E+04 3.43E+04 

.OOE+00 O.OOE+OO O.OOE+OO 

.OOE+00 O.OOE+OO O.OOE+OO 

.OOE+00 O.OOE+OO O.OOE+OO 

.OOE+OO O.OOE+OO O.OOE+OO 

.OOE+OO O.OOE+OO O.OOE+OO 

.OOE+OO O.OOE+OO O.OOE+OO 

.OOE+OO O.OOE+OO O.OOE+OO 

.OOE+OO O.OOE+OO O.OOE+OO 

.OOE+OO O.OOE+OO O.OOE+OO 

.OOE+OO O.OOE+OO O.OOE+OO 

6 
5 
7 
8 
8 
7 
6 
3 
1 
8 
3 
2 
1 
6 
0 
0 
0 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
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15 min 20 min 
15 20 

dla. 

0.87 1.99E+05 1.37E+05 
1.04 1.46E+05 1.49E+05 
1.24 2.23E+05 1.73E+05 
1.48 3.49E+05 2.30E+05 
1.77 -2.86E+05 1.45E+05 
2.11 2.72E+05 2.05E+05 
2.51 2.04E+05 1.33E+05 
3.00 1.55E+05 8.86E+04 
3.58 1.50E+05 5.64E+04 
4.27 1.07E+05 6.04E+04 
5.10 5.82E+04 3.62E+04 
6.08 6.79E+04 2.82E+04 
7.26 3.88E+04 1.21E+04 
8.66 2.43E+04 2.42E+04 
10.33 1.94E+04 2.01E+04 
12.33 O.OOE+OO 8.05E+03 
14.71 1.46E+04 2.01E+04 
17.55 2.43E+04 3.22E+04 
20.94 2.91E+04 1.21E+04 
24.98 O.OOE+OO 8.05E+03 
29.81 O.OOE+OO O.OOE+OO 
35.56 O.OOE+OO O.OOE+OO 
42.43 O.OOE+OO O.OOE+OO 
50.63 O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO 
86.00 O.OOE+OO O.OOE+OO 
102.62 O.OOE+bO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO 

25 min 30 min 45 min 
25 30 45 

1.12E+05 6.87E+04 3.09E+04 
1.06E+05 8.18E+04 3.60E+04 
1.35E+05 8.83E+04 4.89E+04 
9.95E+04 l.llE+05 4.37E+04 
1.09E+05 6.54E+04 3.09E+04 
6.42E+04 5.56E+04 2.57E+04 
7.38E+04 5.23E+04 1.80E+04 
5.13E+04 2.29E+04 5.14E+03 
2.89E+04 2.62E+04 1.03E+04 
3.21E+04 2.29E+04 1.03E+04 
1.60E+04 6.54E+03 1.03E+04 
3.21E+04 1.31E+04 O.OOE+OO 
1.28E+04 9.81E+03 O.OOE+OO 
3.21E+03 3.27E+03 O.OOE+OO 
1.93E+04 O.OOE+OO O.OOE+OO 
1.60E+04 6.54E+03 O.OOE+OO 
1.28E+04 9.81E+03 2.57E+03 
2.57E+04 9.81E+03 5.14E+03 
1.60E+04 3.27E+04 2.57E+03 
6.42E+03 6.54E+03 O.OOE+OO 
3.21E+03 9.81E+03 5.14E+03 
O.OOE+OO 1.31E+04 5.14E+03 
3.21E+03 O.OOE+OO O.OOfe+OO 
3.21E+03 O.OOE+OO 1.03E+04 
O.OOE+OO O.OOE+OO 2.57E+03 
O.OOE+OO O.OOE+OO 2.57E+03 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
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501 

07/28/88 
Time > 

homog 0 min 
-1 0 

dia. 

0.87 5.91E+05 6.00E+05 
1.04 5.51E+05 5.67E+05 
1.24 7.22E+05 5.93E+05 
1.48 9.52E+05 8.86E+05 
1.77 8.40E+05 8.54E+05 
2.11 6.04E+05 7.43E+05 
2.51 4.27E+05 6.52E+05 
3.00 2.30E+05 3.06E+05 
3.58 9.85E+04 2.28E+05 
4.27 5.25E+04 1.30E+05 
5.10 1.31E+04 3.26E+04 
6.08 6.57E+03 1.30E+04 
7.26 1.97E+04 6.52E+03 
8.66 1.31E+04 6.52E+03 
10.33 6.57E+03 O.OOE+OO 
12.33 O.OOE+OO O.OOE+OO 
14.71 O.OOE+OO O.OOE+OO 
17.55 6.57E+03 1.30E+04 
20.94 O.OOE+OO O.OOE+OO 
24.98 O.OOE+OO O.OOE+OO 
29.81 O.OOE+OO O.OOE+OO 
35.56 O.OOE+OO O.OOE+OO 
42.43 O.OOE+OO O.OOE+OO 
50.63 O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO 
86.00 O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO 

3 min 5 min 10 min 
3 5 10 

6.03E+05 3.83E+05 3.04E+05 
4.55E+05 3.78E+05 3.00E+05 
6.09E+05 5.75E+05 3.66E+05 
8.08E+05 6.65E+05 4.50E+05 
6.93E+05 5.70E+05 4.59E+05 
6.29E+05 5.75E+05 4.63E+05 
4.87E+05 5.70E+05 3.35E+05 
3.14E+05 3.68E+05 3.00E+05 
1.54E+05 1.92E+05 2.03E+05 
1.09E+05 1.21E+05 1.32E+05 
4.49E+04 4.54E+04 9.71E+04 
6.41E+03 1.51E+04 5.74E+04 
1.28E+04 l.OlE+04 4.41E+04 
6.41E+03 5.04E+03 2.65E+04 
O.OOE+OO 5.04E+03 1.32E+04 
1.28E+04 O.OOE+OO 1.77E+04 
O.OOE+OO O.OOE+OO O.OOE+OO 
1.28E+04 1.51E+04 1.77E+04 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
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502 

15 min 20 min 
15 20 

dia. 

0.87 1.98E+05 1.29E+05 
1.04 1.12E+05 l.lOE+05 
1.24 2.24E+05 1.39E+05 
1.48 2.28E+05 1.97E+05 
1.77 1.64E+05 1.68E+05 
2.11 1.87E+05 1.45E+05 
2.51 2.17E+05 9.03E+04 
3.00 1.23E+05 8.38E+04 
3.58 1.23E+05 2.26E+04 
4.27 7.10E+04 3.55E+04 
5.10 6.35E+04 2.58E+04 
6.08 2.61E+04 2.90E+04 
7.26 2.99E+04 1.61E+04 
8.66 2.61E+04 9.67E+03 
10.33 1.49E+04 1.93E+04 
12.33 1.49E+04 3.22E+03 
14.71 1.87E+04 3.22E+03 
17.55 2.61E+04 1.29E+04 
20.94 7.47E+03 1.29E+04 
24.98 3.74E+03 9.67E+03 
29.81 O.OOE+OO 9.67E+03 
35.56 O.OOE+OO 3.22E+03 
42.43 O.OOE+OO O.OOE+OO 
50.63 O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO 
86.00 O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO 

25 min 30 min 45 min 
25 30 45 

7.79E+04 6.87E+04 4.29E+04 
8.69E+04 7.33E+04 3.77E+04 
1.26E+05 9.62E+04 6.35E+04 
1.68E+05 9.39E+04 6.86E+04 
9.29E+04 6.41E+04 5.15E+04 
8.69E+04 6.87E+04 2.57E+04 
9.29E+04 4.35E+04 4.12E+04 
5.39E+04 2.75E+04 1.37E+04 
3.30E+04 2.29E+04 1.20E+04 
4.19E+04 2.52E+04 1.03E+04 
2.10E+04 6.87E+03 5.15E+03 
O.OOE+OO 9.16E+03 6.86E+03 
1.20E+04 6.87E+03 6.86E+03 
3.00E+03 6.87E+03 O.OOE+OO 
8.99E+03 4.58E+03 O.OOE+OO 
5.99E+03 2.29E+03 O.OOE+OO 
3.00E+03 2.29E+03 O.OOE+OO 
5.99E+03 6.87E+03 6.86E+03 
3.00E+03 O.OOE+OO 1.72E+03 
O.OOE+OO O.OOE+OO O.OOE+OO 
3.00E+03 2.29E+03 O.OOE+OO 
3.00E+03 O.OOE+OO 5.15E+03 
3.00E+03 2.29E+03 O.OOE+OO 
O.OOE+OO O.OOE+OO 1.72E+03 
O.OOE+OO 4.58E+03 3.43E+03 
O.OOE+OO 2.29E+03 O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
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oo+aoo'0 oo+aoo 0 oo+aoo*o 
oo+aoo 0 oo+aoo"0 oo+aoo o 
oo+aoo 0 oo+aoo'0 oo+aoo"o 
oo+aoo 0 oo+aoo 0 oo+aoo"o 
oo+aoo 0 oo+aoo 0 oo+aoo o 
oo+aoo "0 oo+aoo 0 oo+aoo o 
oo+aoo"0 oo+aoo 0 oo+aoo o 
oo+aoo 0 oo+aoo"0 oo+aoo o 
oo+aoo"0 oo+aoo 0 oo+aoo o 
oo+aoo*0 oo+aoo 0 oo+aoo o 
oo+aoo*0 oo+aoo"0 oo+aoo"o 
oo+aoo'0 oo+aoo*0 oo+aoo"o 
oo+aoo"0 oo+aoo 0 oo+aoo o 
EO+azE'9 oo+aoo 0 oo+aoo o 
oo+aoo 0 oo+aoo"0 oo+aoo o 
oo+aoo*0 oo+aoo*0 oo+aoo o 
to+a9Z'i oo+aoo"0 E0+a%%'9 
to+ao6'% i/o+aEA'T £0+aii7"9 
t70+a93'T w+aoE'Z i70+a6i7*t7 
170+358*8 170+381'5 W+STZ E 
SO+aEE'% SO+aOS'X 170+386 *8 
SO+a<7£'3 GO+aOO'E S0+3E9 'Z 
50+3^79 ' 9 50+3172" S 50+3^0*5 
50+360'8 50+3517'9 50+3E9 V. 
50+3917 "Z 50+3179 '8 50+a8E V 
50+386 8 50+322*6 50+3%% 6 
50+386*8 50+38% *8 50+aE8 * Z. 
50+36^7*^7 50+328*5 50+a£0*9 
50+390*5 50+30^*5 50+3£9*Z 

0% 5 £ 
uTm 0% «T® 5 "T® £ 

00+300 0 00+300*0 I7l7*22% 
00+300*0 00+300*0 29*20% 
00+300*0 00+300*0 00*98 
00+300*0 00+300*0 80*21 
00+300"0 00+300*0 %9*09 
00+300*0 00+300*0 £9*05 
00+300*0 00+300*0 £17 *217 
00+3000 00+300*0 95*5£ 
00+300*0 00+300*0 %8*62 
00+300*0 00+300*0 86*92 
00+300*0 00+300*0 <76*02 
00+300*0 00+300*0 G5'Z% 
00+300*0 00+300*0 %f*t% 
00+300*0 00+300*0 ££*2% 
00+300*0 00+300*0 ££*0% 
00+300*0 00+300*0 99*8 
£0+325*9 l70+3il6*% 92*Z 
£0+325*9 170+3E9 2 80*9 
£0+325'9 170+382 *£ 0%*S 
170+395*17 50+350 % Z2*l7 
50+3£i7*% 50+352 % 85 *£ 
G0+at6'2 50+360*£ 00*£ 
50+3172*17 50+3%5'5 %5*2 
50+382*8 50+317E 8 %%*2 
50+38E 6 50+3/19*8 LL'\ 
90+36%*% 90+390% 8t*% 
50+368 *i 50+322*6 <72*% 
50+3517*9 50+3££*9 <70*% 
50+3170*1 S0+3E<7*9 18*0 

•®TP 
0 %-

uTm 0 Somoq 

< eniTi 
88/12/90 

£05 
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504 

15 min 20 min 
15 20 

dla. 

0.87 7.23E+05 5.26E+05 
1.04 5.35E+05 4.98E+05 
1.24 8.27E+05 8.17E+05 
1.48 8.97E+05 9.34E+05 
1.77 8.14E+05 7.96E+05 
2.11 8.00E+05 7.61E+05 
2.51 5.84E+05 5.88E+05 
3.00 2.99E+05 3.18E+05 
3.58 1.46E+05 2.35E+05 
4.27 1.18E+05 7.61E+04 
5.10 4.17E+04 6.23E+04 
6.08 6.95E+03 6.92E+03 
7.26 1.39E+04 2.08E+04 
8.66 6.95E+03 6.92E+03 
10.33 1.39E+04 6.92E+03 
12.33 O.OOE+OO O.OOE+OO 
14.71 O.OOE+OO O.OOE+OO 
17.55 6.95E+03 O.OOE+OO 
20.94 O.OOE+OO O.OOE+OO 
24.98 O.OOE+OO O.OOE+OO 
29.81 O.OOE+OO O.OOE+OO 
35.56 O.OOE+OO O.OOE+OO 
42.43 O.OOE+OO O.OOE+OO 
50.63 O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO 
86.00 O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO 

25 min 30 min 45 min 
25 30 45 

5.27E+05 4.27E+05 1.92E+05 
3.92E+05 3.35E+05 2.10E+05 
5.73E+05 5.13E+05 2.42E+05 
6.75E+05 6.76E+05 3.01E+05 
5.79E+05 5.13E+05 2.42E+05 
7.59E+05 4.67E+05 2.24E+05 
5.21E+05 3.25E+05 1.37E+05 
3.73E+05 2.64E+05 l.OOE+05 
2.19E+05 2.03E+05 l.OOE+05 
1.03E+05 1.22E+05 1.05E+05 
6.43E+04 8.64E+04 3.20E+04 
5.15E+04 8.13E+04 1.83E+04 
1.29E+04 3.56E+04 2.74E+04 
6.43E+03 2.03E+04 3.65E+04 
1.29E+04 5.08E+03 3.20E+04 
6.43E+03 2.54E+04 2.28E+04 
O.OOE+OO 5.08E+03 1.37E+04 
O.OOE+OO 1.52E+04 4.56E+03 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
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505 

08/15/88 
Time > 

homog 
-1 

0 mln 
0 

3 mln 
3 

5 mln 10 mln 
5 10 

dla 

0.87 l.lOE+06 6.45E+05 8.21E+05 6.97E+05 7.02E+05 
1.04 7.35E+05 8.02E+05 6.22E+05 6.16E+05 6.07E+05 
1.24 l.lOE+06 9.32E+05 1.02E+06 7.83E+05 8.41E+05 
1.48 1.40E+06 1.40E+06 1.15E+06 9.85E+05 1.09E+06 
1.77 1.02E+06 1.21E+06 1.03E+06 8.47E+05 9.17E+05 
2.11 8.40E+05 8.73E+05 8.60E+05 8.01E+05 8.22E+05 
2.51 4.73E+05 4.56E+05 4.11E+05 4.49E+05 6.39E+05 
3.00 1.51E+05 3.26E+05 3.27E+05 2.65E+05 2.72E+05 
3.58 7.88E+04 1.24E+05 1.41E+05 1.21E+05 1.45E+05 
4.27 5.91E+04 7.17E+04 7.06E+04 5.76E+04 7.59E+04 
5.10 2.63E+04 3.91E+04 5.77E+04 2.88E+04 2.53E+04 
6.08 6.57E+03 6.52E+03 1.92E+04 2.30E+04 1.26E+04 
7.26 O.OOE+OO 1.30E+04 6.41E+03 1.15E+04 6.32E+03 
8.66 O.OOE+OO O.OOE+OO 6.41E+03 O.OOE+OO 6.32E+03 
10.33 O.OOE+OO 6.52E+03 1.28E+04 O.OOE+OO O.OOE+OO 
12.33 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
14.71 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
17.55 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
20.94 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
24.98 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
29.81 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
35.56 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
42.43 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
50.63 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
86.00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
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506 

15 min 20 min 25 min 30 min 45 min 
15 20 25 30 45 

dia. 

0.87 6.51E+05 5.15E+05 4.04E+05 4.57E+05 2.34E+05 
1.04 5.35E+05 5.09E+05 4.58E+05 3.81E+05 2.96E+05 
1.24 8.94E+05 6.78E+05 5.48E+05 5.13E+05 3.62E+05 
1.48 1.23E+06 9.02E+05 8.39E+05 7.27E+05 4.93E+05 
1.77 8.09E+05 8.30E+05 6.60E+05 6.66E+05 3.62E+05 
2.11 9.07E+05 8.54E+05 5.52E+05 6.71E+05 4.32E+05 
2.51 6.02E+05 6.84E+05 4.00E+05 4.17E+05 3.70E+05 
3.00 3.10E+05 3.39E+05 3.28E+05 3.56E+05 2.18E+05 
3.58 1.58E+05 2.91E+05 1.80E+05 2.13E+05 1.56E+05 
4.27 1.52E+05 1.27E+05 1.30E+05 1.63E+05 l.llE+05 
5.10 6.69E+04 8.48E+04 3.59E+04 6.61E+04 6.16E+04 
6.08 6.08E+03 4.84E+04 4.94E+04 9.15E+04 6.58E+04 
7.26 6.08E+03 2.42E+04 4.04E+04 4.06E+04 6.16E+04 
8.66 O.OOE+OO 2.42E+04 2.69E+04 3.05E+04 2.88E+04 
10.33 6.08E+03 O.OOE+OO 8.98E+03 1.02E+04 2.05E+04 
12.33 6.08E+03 6.06E+03 4.49E+03 5.08E+03 8.22E+03 
14.71 O.OOE+OO O.OOE+OO 8.98E+03 1.02E+04 1.23E+04 
17.55 O.OOE+OO O.OOE+OO O.OOE+OO 5.08E+03 1.23E+04 
20.94 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
24.98 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
29.81 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
35.56 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
42.43 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
50.63 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
86.00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
122,44 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
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507 

06/29/88 
Time > 

homog 
-1 

0 min 
0 

3 min 
3 

5 min 10 min 
5 10 

dla. 

0.87 8.93E+05 7.30E+05 5.58E+05 5.82E+05 6.07E+05 
1.04 7.94E+05 7.23E+05 5.39E+05 5.13E+05 4.30E+05 
1.24 8.21E+05 8.86E+05 7.50E+05 7.72E+05 6.45E+05 
1.48 1.25E+06 l.lOE+06 1.19E+06 8.76E+05 9.86E+05 
1.77 8.21E+05 9.91E+05 8.85E+05 8.70E+05 8.28E+05 
2.11 7.48E+05 8.93E+05 7.89E+05 6.97E+05 8.54E+05 
2.51 3.09E+05 5.87E+05 4.81E+05 5.18E+05 6.01E+05 
3.00 1.44E+05 3.98E+05 2.18E+05 2.82E+05 3.79E+05 
3.58 1.05E+05 1.24E+05 1.54E+05 1.44E+05 2.02E+05 
4.27 5.25E+04 5.21E+04 3.21E+04 9.22E+04 8.22E+04 
5.10 3.28E+04 1.96E+04 3.21E+04 1.15E+04 1.26E+04 
6.08 1.31E+04 6.52E+03 O.OOE+OO O.OOE+OO 1.26E+04 
7.26 1.97E+04 O.OOE+OO O.OOE+OO O.OOE+OO 1.26E+04 
8.66 6.57E+03 6.52E+03 O.OOE+OO O.OOE+OO O.OOE+OO 
10.33 6.57E+03 O.OOE+OO O.OOE+OO 5.76E+03 O.OOE+OO 
12.33 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
14.71 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 6.32E+03 
17.55 6.57E+03 6.52E+03 1.28E+04 1.15E+04 O.OOE+OO 
20.94 2.63E+04 3.26E+04 2.57E+04 3.46E+04 3.79E+04 
24.98 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
29.81 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
35.56 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
42.43 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
50.63 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
86.00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
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15 min 20 min 
15 20 

dla. 

0.87 4.73E+05 2.95E+05 
1.04 3.96E+05 3.27E+05 
1.24 5.49E+05 4.67E+05 
1.48 7.23E+05 5.36E+05 
1.77 6.68E+05 4.99E+05 
2.11 6.61E+05 4.08E+05 
2.51 5.01E+05 2.84E+05 
3.00 3.20E+05 2.09E+05 
3.58 1.95E+05 1.72E+05 
4.27 1.04E+05 1.34E+05 
5.10 4.87E+04 6.97E+04 
6.08 5.56E+04 2.68E+04 
7.26 2.78E+04 3.22E+04 
8.66 1.39E+04 3.22E+04 
10.33 O.OOE+OO 5.36E+03 
12.33 O.OOE+OO 1.61E+04 
14.71 O.OOE+OO 5.36E+03 
17.55 2.09E+04 1.07E+04 
20.94 2.78E+04 4.29E+04 
24.98 O.OOE+OO O.OOE+OO 
29.81 O.OOE+OO O.OOE+OO 
35.56 O.OOE+OO O.OOE+OO 
42.43 O.OOE+OO O.OOE+OO 
50.63 O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO 
86.00 O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO 

25 min 30 min 45 min 
25 30 45 

1.50E+05 1.63E+05 5.88E+04 
1.89E+05 1.52E+05 6.46E+04 
2.39E+05 2.08E+05 7.35E+04 
3.09E+05 2.34E+05 6.76E+04 
1.75E+05 1.98E+05 7.93E+04 
2.59E+05 2.34E+05 5.29E+04 
2.49E+05 1.22E+05 4.41E+04 
1.45E+05 8.64E+04 2.94E+04 
1.15E+05 9.65E+04 2.94E+04 
5.98E+04 6.10E+04 1.18E+04 
4.49E+04 2.03E+04 1.76E+04 
6.48E+04 2.03E+04 1.47E+04 
2.49E+04 3.05E+04 8.81E+03 
1.50E+04 3.05E+04 1.18E+04 
1.50E+04 2.03E+04 1.18E+04 
4.49E+04 2.03E+04 O.OOE+OO 
1.50E+04 1.02E+04 2.94E+03 
3.99E+04 1.52E+04 1.18E+04 
2.49E+04 2.03E+04 5.88E+03 
O.OOE+OO O.OOE+OO 2.06E+04 
O.OOE+OO O.OOE+OO 8.81E+03 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
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08/17/88 
Time > 

homog 0 mln 3 mln 5 mln 10 min 
-1 .0 3 5 10 

dla. 

0.87 6.50E+05 7.91E+05 7.86E+05 7.09E+05 5.82E+05 
1.04 6.76E+05 6.31E+05 6.51E+05 5.93E+05 4.93E+05 
1.24 7.02E+05 1.03E+06 8.23E+05 7.60E+05 6.89E+05 
1.48 1.04E+06 1.32E+06 1.17E+06 8.29E+05 1.05E+06 
1.77 6.50E+05 1.03E+06 8.16E+05 8.41E+05 8.28E+05 
2.11 4.99E+05 1.05E+06 7.48E+05 7.55E+05 6.32E+05 
2.51 2.82E+05 5.70E+05 4.12E+05 4.32E+05 4.11E+05 
3.00 1.38E+05 3.12E+05 1.95E+05 2.02E+05 2.78E+05 
3.58 4.60E+04 1.52E+05 1.12E+05 8.64E+04 9.49E+04 
4.27 5.91E+04 9.12E+04 4.49E+04 8.06E+04 3.79E+04 
5.10 6.57E+03 2.28E+04 4.49E+04 2.30E+04 8.22E+04 
6.08 1.31E+04 7.60E+03 7.48E+03 5.76E+03 O.OOE+OO 
7.26 6.57E+03 O.OOE+OO O.OOE+OO O.OOE+OO 6.32E+03 
8.66 1.31E+04 O.OOE+OO O.OOE+OO 5.76E+03 6.32E+03 
10.33 O.OOE+OO O.OOE+OO O.OOE+OO 5.76E+03 O.OOE+OO 
12.33 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 6.32E+03 
14.71 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
17.55 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
20.94 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
24.98 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
29.81 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
35.56 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
42.43 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
50.63 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
86.00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
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15 min 20 min 
15 20 

dla. 

0.87 5.28E+05 4.30E+05 
1.04 4.66E+05 3.33E+05 
1.24 6.26E+05 4.66E+05 
1.48 7.44E+05 6.06E+05 
1.77 8.14E+05 4.24E+05 
2.11 6.75E+05 5.57E+05 
2.51 5.28E+05 4.00E+05 
3.00 3.76E+05 3.33E+05 
3.58 2.92E+05 1.64E+05 
4.27 1.67E+05 1.03E+05 
5.10 8.34E+04 6.66E+04 
6.08 4.87E+04 4.84E+04 
7.26 6.95E+03 3.03E+04 
8.66 1.39E+04 1.82E+04 
10.33 O.OOE+OO O.OOE+OO 
12.33 O.OOE+OO 6.06E+03 
14.71 O.OOE+OO 6.06E+03 
17.55 O.OOE+OO O.OOE+OO 
20.94 O.OOE+OO O.OOE+OO 
24.98 O.OOE+OO O.OOE+OO 
29.81 O.OOE+OO O.OOE+OO 
35.56 O.OOE+OO O.OOE+OO 
42.43 O.OOE+OO O.OOE+OO 
50.63 O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO 
86.00 O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO 

25 min 30 min 45 min 
25 30 45 

3.01E+05 2.65E+05 1.93E+05 
2.24E+05 2.01E+05 1.36E+05 
3.32E+05 2.33E+05 2.30E+05 
4.53E+05 4.62E+05 2.30E+05 
3.37E+05 3.20E+05 2.22E+05 
3.73E+05 3.52E+05 2.30E+05 
2.33E+05 2.42E+05 1.89E+05 
2.29E+05 1.83E+05 1.44E+05 
1.80E+05 1.56E+05 1.03E+05 
1.08E+05 8.69E+04 6.58E+04 
1.21E+05 l.OlE+05 6.16E+04 
4.49E+04 6.40E+04 3.29E+04 
1.80E+04 4.12E+04 2.88E+04 
4.04E+04 3.20E+04 3.29E+04 
2.69E+04 3.20E+04 2.88E+04 
1.35E+04 4.57E+03 8.22E+03 
1.80E+04 1.37E+04 4.11E+03 
4.49E+03 9.15E+03 1.64E+04 
O.OOE+OO 4.57E+03 O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
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09/16/88 
Time > 

homog 0 mln 
-1 0 

dla. 

0.87 7.04E+05 7.04E+05 
1.04 6.78E+05 6.78E+05 
1.24 8.21E+05 8.21E+05 
1.48 1.15E+06 1.15E+06 
1.77 9.19E+05 9.19E+05 
2.11 8.60E+05 8.60E+05 
2.51 5.21E+05 5.21E+05 
3.00 3.19E+05 3.19E+05 
3.58 8.47E+04 8.47E+04 
4.27 5.87E+04 5.87E+04 
5.10 O.OOE+OO O.OOE+OO 
6.08 1.96E+04 1.96E+04 
7.26 O.OOE+OO O.OOE+OO 
8.66 O.OOE+OO O.OOE+OO 
10.33 O.OOE+OO O.OOE+OO 
12.33 O.OOE+OO O.OOE+OO 
14.71 O.OOE+OO O.OOE+OO 
17.55 O.OOE+OO O.OOE+OO 
20.94 O.OOE+OO O.OOE+OO 
24.98 O.OOE+OO O.OOE+OO 
29.81 O.OOE+OO O.OOE+OO 
35.56 O.OOE+OO O.OOE+OO 
42.43 O.OOE+OO O.OOE+OO 
50.63 O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO 
86.00 O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO 

3 mln 5 mln 10 mln 
3 5 10 

.33E+05 4.08E+05 1.99E+05 

.94E+05 3.02E+05 1.90E+05 

.02E+05 4.28E+05 2.16E+05 

.35E+05 6.50E+05 3.22E+05 

.96É+05 5.54E+05 1.90E+05 

.40E+05 4.18E+05 1.90E+05 

.OOE+05 3.63E+05 1.59E+05 

.09E+05 2.92E+05 l.OlE+05 

.91E+05 2.02E+05 7.94E+04 

.54E+04 1.26E+05 5.30E+04 

.73E+04 9.07E+04 7.94E+04 

.24E+04 3.02E+04 4.85E+04 

.12E+04 2.02E+04 1.32E+04 

.OOE+00 1.51E+04 2.21E+04 

.OOE+00 1.51E+04 2.65E+04 

.OOE+00 O.OOE+OO 1.32E+04 

.OOE+00 O.OOE+OO 8.83E+03 

.OOE+00 O.OOE+OO 4.41E+03 

.OOE+00 1.51E+04 1.77E+04 

.OOE+00 O.OOE+OO 8.83E+03 

.OOE+00 O.OOE+OO O.OOE+OO 

.OOE+00 O.OOE+OO O.OOE+OO 

.OOE+OO O.OOE+OO O.OOE+OO 

.OOE+00 O.OOE+OO O.OOE+OO 

.OOE+OO O.OOE+OO O.OOE+OO 

.OOE+OO O.OOE+OO O.OOE+OO 

.OOE+OO O.OOE+OO O.OOE+OO 

.OOE+OO O.OOE+OO O.OOE+OO 

.OOE+OO O.OOE+OO O.OOE+OO 

5 
4 
7 
7 
6 
6 
5 
3 
1 
9 
6 
2 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
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15 min 20 min 
15 20 

dla. 

0.87 9.27E+04 6.91E+04 
1.04 9.71E+04 6.22E+04 
1.24 1.37E+05 l.OOE+05 
1.48 1.72E+05 1.24E+05 
1.77 l.OlE+05 1.17E+05 
2.11 1.15E+05 5.52E+04 
2.51 l.lOE+05 8.98E+04 
3.00 7.94E+04 7.60E+04 
3.58 1.77E+04 2.76E+04 
4.27 2.21E+04 2.07E+04 
5.10 3.53E+04 6.91E+03 
6.08 2.65E+04 6.91E+03 
7.26 8.83E+03 6.91E+03 
8.66 1.32E+04 6.91E+03 
10.33 O.OOE+OO O.OOE+OO 
12.33 1.32E+04 3.45E+03 
14.71 O.OOE+OO 3.45E+03 
17.55 O.OOE+OO O.OOE+OO 
20.94 1.32E+04 1.04E+04 
24.98 8.83E+03 O.OOE+OO 
29.81 O.OOE+OO 3.45E+03 
35.56 O.OOE+OO O.OOE+OO 
42.43 8.83E+03 6.91E+03 
50.63 O.OOE+OO 3.45E+03 
60.41 O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO 3.45E+03 
86.00 O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO 

25 min 30 min 45 min 
25 30 45 

4.81E+04 7.85E+04 3.53E+04 
4.81E+04 6.21E+04 6.17E+04 
6.74E+04 8.83E+04 5.58E+04 
7.06E+04 8.83E+04 5.29E+04 
6.74E+04 9.16E+04 3.82E+04 
4.49E+04 7.52E+04 3.23E+04 
3.21E+04 5.23E+04 3.23E+04 
2.25E+04 1.96E+04 1.18E+04 
1.28E+04 3.27E+04 5.88E+03 
3.21E+03 2.29E+04 8.81E+03 
1.28E+04 3.27E+03 2.94E+03 
3.21E+03 3.27E+03 O.OOE+OO 
O.OOE+OO 3.27E+03 2.94E+03 
3.21E+03 3.27E+03 2.94E+03 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO 5.88E+03 
O.OOE+OO O.OOE+OO 2.94E+03 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO 3.27E+03 O.OOE+OO 
3.21E+03 O.OOE+OO 2.94E+03 
3.21E+03 O.OOE+OO O.OOE+OO 
3.21E+03 3.27E+03 O.OOE+OO 
3.21E+03 O.OOE+OO 2.94E+03 
O.OOE+OO O.OOE+OO 2.94E+03 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
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09/12/88 
Time > 

homog 
-1 

0 min 
0 

3 min 
3 

5 min 10 min 
5 10 

dla 

0.87 6.67E+05 3.55E+05 1.54E+05 1.17E+05 7.06E+04 
1.04 4.73E+05 2.82E+05 1.14E+05 l.OOE+05 6.62E+04 
1.24 7.17E+05 3.73E+05 1.49E+05 1.45E+05 l.OlE+05 
1.48 8.40E+05 4.78E+05 1.69E+05 1.29E+05 1.37E+05 
1.77 6.26E+05 4.32E+05 1.74E+05 8.84E+04 5.30E+04 
2.11 4.07E+05 3.73E+05 1.49E+05 9.65E+04 7.94E+04 
2.51 2.70E+05 2.77E+05 1.74E+05 9.25E+04 6.18E+04 
3.00 1.32E+05 2.87E+05 1.09E+05 3.62E+04 1.32E+04 
3.58 5.60E+04 2.27E+05 8.45E+04 4.02E+04 2.21E+04 
4.27 3.56E+04 1.50E+05 1.99E+04 1.61E+04 O.OOE+OO 
5.10 2.54E+04 1.14E+05 1.99E+04 1.61E+04 4.41E+03 
6.08 O.OOE+OO 7.73E+04 3.48E+04 8.04E+03 O.OOE+OO 
7.26 O.OOE+OO 3.64E+04 1.49E+04 O.OOE+OO O.OOE+OO 
8.66 O.OOE+OO 3.18E+04 1.49E+04 8i04E+03 O.OOE+OO 
10.33 O.OOE+OO 9.10E+03 1.49E+04 4.02E+03 O.OOE+OO 
12.33 O.OOE+OO 3.64E+04 4.97E+03 4.02E+03 O.OOE+OO 
14.71 O.OOE+OO O.OOE+OO 9.94E+03 8.04E+03 O.OOE+OO 
17.55 O.OOE+OO O.OOE+OO 9.94E+03 4.02E+03 O.OOE+OO 
20.94 O.OOE+OO O.OOE+OO 4.97E+03 O.OOE+OO O.OOE+OO 
24.98 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 4.41E+03 
29.81 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
35.56 O.OOE+OO O.OOE+OO 4.97E+03 O.OOE+OO 4.41E+03 
42.43 O.OOE+OO O.OOE+OO O.OOE+OO 4.02E+03 4.41E+03 
50.63 O.OOE+OO O.OOE+OO 4.97E+03 4.02E+03 4.41E+03 
60.41 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO O.OOE+OO 4.02E+03 O.OOE+OO 
86.00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
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87 
04 
24 
48 
77 
11 
51 
00 
58 
27 
10 
08 
26 
66 
33 
33 
71 
55 
94 
98 
81 
56 
43 
63 
41 
08 
00 
62 
44 

15 min 
15 

20 min 
20 

25 min 30 min 
25 30 

45 min 
45 

7.50E+04 1.29E+05 
6.62E+04 l.lOE+05 
6.18E+04 1.39E+05 
5.30E+04 1.97E+05 
l.OlE+05 1.68E+05 
4.85E+04 1.45E+05 
4.41E+04 9.03E+04 
2.65E+04 8.38E+04 
2.21E+04 2.26E+04 
8.83E+03 3.55E+04 
1.32E+04 2.58E+04 
8.83E+03 2.90E+04 
8.83E+03 1.61E+04 
O.OOE+OO 9.67E+03 
O.OOE+OO 1.93E+04 
O.OOE+OO 3.22E+03 
O.OOE+OO 3.22E+03 
4.41E+03 1.29E+04 
O.OOE+OO 1.29E+04 
O.OOE+OO 9.67E+03 
4.41E+03 9.67E+03 
O.OOE+OO 3.22E+03 
O.OOE+OO O.OOE+OO 
4.41E+03 O.OOE+OO 
O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO 
4.41E+03 O.OOE+OO 
O.OOE+OO O.OOE+OO 

7.79E+04 2.11E+04 
8.69E+04 1.76E+04 
1.26E+05 2.82E+04 
1.68E+05 4.23E+04 
9.29E+04 2.82E+04 
8.69E+04 2.46E+04 
9.29E+04 3.17E+04 
5.39E+04 2.46E+04 
3.30E+04 1.41E+04 
4.19E+04 O.OOE+OO 
2.10E+04 O.OOE+OO 
O.OOE+OO 7.04E+03 
1.20E+04 O.OOE+OO 
3.00E+03 3.52E+03 
8.99E+03 O.OOE+OO 
5.99E+03 O.OOE+OO 
3.00E+03 O.OOE+OO 
5.99E+03 O.OOE+OO 
3.00E+03 3.52E+03 
O.OOE+OO O.OOE+OO 
3.00E+03 O.OOE+OO 
3.00E+03 O.pOE+00 
3.00E+03 3.52E+03 
O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO 
O.OOE+OO 7.04E+03 
O.OOE+OO O.OOE+OO 
O.OOE+OO 3.52E+03 
O.OOE+OO O.OOE+OO 

5.38E+04 
4.43E+04 
5.69E+04 
7.59E+04 
6.01E+04 
2.53E+04 
6.33E+03 
1.27E+04 
6.33E+03 
6.33E+03 
O.OOE+OO 
3.16E+03 
3.16E+03 
O.OOE+OO 
3.16E+03 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
3.16E+03 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
3.16E+03 
O.OOE+OO 
O.OOE+OO 
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09/20/88 
Time > 

homog 0 min 
-1 0 

dla. 

0.87 6.91E+05 6.91E+05 
1.04 6.06E+05 6.06E+05 
1.24 7.82E+05 7.82E+05 
1.48 1.16E+06 1.16E+06 
1.77 9.25E+05 9.25E+05 
2.11 7.43E+05 7.43E+05 
2.51 4.95E+05 4.95E+05 
3.00 2.15E+05 2.15E+05 
3.58 9.78E+04 9.78E+04 
4.27 4.56E+04 4.56E+04 
5.10 2.61E+04 2.61E+04 
6.08 O.OOE+OO O.OOE+OO 
7.26 O.OOE+OO O.OOE+OO 
8.66 O.OOE+OO O.OOE+OO 

10.33 O.OOE+OO O.OOE+OO 
12.33 O.OOE+OO O.OOE+OO 
14.71 O.OOE+OO O.OOE+OO 
17.55 O.OOE+OO O.OOE+OO 
20.94 O.OOE+OO O.OOE+OO 
24.98 O.OOE+OO O.OOE+OO 
29.81 O.OOE+OO O.OOE+OO 
35.56 O.OOE+OO O.OOE+OO 
42.43 O.OOE+OO O.OOE+OO 
50.63 O.OOE+OO O.OOE+OO 
60,41 O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO 
86.00 O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO 

3 min 5 min 10 ntin 
3 5 10 

7.57E+05 7.09E+05 4.55E+05 
5.77E+05 5.76E+05 4.68E+05 
8.40E+05 7.37E+05 4.62E+05 
1.06E+06 l.OOE+06 6.89E+05 
8.40E+05 7.26E+05 5.37E+05 
8.08E+05 6.28E+05 4.93E+05 
5.32E+05 4.49E+05 2.97E+05 
3.34E+05 3.00E+05 1.96E+05 
1.41E+05 1.21E+05 1.20E+05 
5.13E+04 5.76E+04 9.49E+04 
1.92E+04 1.15E+04 3.79E+04 
6.41E+03 5.76E+03 2.53E+04 
6.41E+03 1.15E+04 0.OOE+00 
O.OOE+OO O.OOE+OO 6.32E+03 
6.41E+03 O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
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15 min 20 min 
15 20 

dia. 

0.87 3.16E+05 1.93E+05 
1.04 3.47E+05 2.03E+05 
1.24 3.59E+05 2.80E+05 
1.48 4.62E+05 3.77E+05 
1.77 4.38E+05 2.51E+05 
2.11 4.14E+05 2.08E+05 
2.51 2.74E+05 2.03E+05 
3.00 1.95E+05 1.55E+05 
3.58 1.89E+05 8.21E+04 
4.27 l.lOE+05 8.21E+04 
5.10 7.91E+04 5.31E+04 
6.08 4.87E+04 7.24E+04 
7.26 4.26E+04 5.31E+04 
8.66 1.22E+04 1.45E+04 
10.33 1.83E+04 1.93E+04 
12.33 6.08E+03 9.66E+03 
14.71 1.22E+04 4.35E+04 
17.55 O.OOE+OO 9.66E+03 
20.94 O.OOE+OO 9.66E+03 
24.98 O.OOE+OO O.OOE+OO 
29.81 O.OOE+OO O.OOE+OO 
35.56 O.OOE+OO O.OOE+OO 
42.43 O.OOE+OO O.OOE+OO 
50.63 O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO 
86.00 O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO 

25 min 30 min 45 min 
25 30 45 

1.39E+05 1.74E+05 1.40E+05 
2.06E+05 1.33E+05 7.81E+04 
1.98E+05 1.46E+05 1.19E+05 
2.33E+05 2.33E+05 1.40E+05 
1.71E+05 1.78E+05 9.04E+04 
1.53E+05 1.37E+05 1.07E+05 
1.08E+05 8.69E+04 4.11E+04 
7.18E+04 8.23E+04 2.88E+04 
4.04E+04 5.95E+04 3.70E+04 
8.08E+04 5.03E+04 1.64E+04 
3.59E+04 3.20E+04 O.OOE+OO 
1.35E+04 9.15E+03 1.23E+04 
1.35E+04 4.57E+03 4.11E+03 
4.04E+04 1.37E+04 8.22E+03 
1.35E+04 O.OOE+OO O.OOE+OO 
1.35E+04 4.57E+03 2.05E+04 
2.24E+04 9.15E+03 1.23E+04 
3.14E+04 1.83E+04 1.64E+04 
4.49E+03 9.15E+03 1.64E+04 
4.49E+03 1.83E+04 4.11E+03 
O.OOE+OO 9.15E+03 1.64E+04 
O.OOE+OO O.OOE+OO 8.22E+03 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 



www.manaraa.com

517 

09/20/88 
Time > 

homog 0 min 
-1 0 

dia. 

0.87 5.45E+05 7.89E+05 
1.04 6.24E+05 7.43E+05 
1.24 7.29E+05 7.89E+05 
1.48 8.99E+05 9.19E+05 
1.77 8.34E+05 8.80E+05 
2.11 5.12E+05 5.15E+05 
2.51 2.69E+05 3.91E+05 
3.00 1.31E+05 2.15E+05 
3.58 5.25E+04 1.04E+05 
4.27 1.31E+04 4.56E+04 
5.10 1.31E+04 6.52E+03 
6.08 6.57E+03 1.96E+04 
7.26 1.31E+04 O.OOE+OO 
8.66 O.OOE+OO O.OOE+OO 
10.33 6.57E+03 6.52E+03 
12.33 O.OOE+OO O.OOE+OO 
14.71 O.OOE+OO 6.52E+03 
17.55 O.OOE+OO O.OOE+OO 
20.94 O.OOE+OO O.OOE+OO 
24.98 O.OOE+OO O.OOE+OO 
29.81 O.OOE+OO O.OOE+OO 
35.56 O.OOE+OO O.OOE+OO 
42.43 O.OOE+OO O.OOE+OO 
50.63 O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO 
86.00 O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO 

3 min 5 min 10 min 
3 5 10 

.52E+05 5.18E+05 2.38E+05 

.61E+05 4.95E+05 1.99E+05 

.57E+05 6.62E+05 3.15E+05 

.llE+05 7.20E+05 2.71E+05 

.93E+05 6.62E+05 2.77E+05 

.25E+05 5.36E+05 2.55E+05 

.66E+05 4.15E+05 2.21E+05 

.50E+05 2.59E+05 1.49E+05 

.62E+04 1.09E+05 l.llE+05 

.06E+04 4.61E+04 1.05E+05 

.92E+04 1.73E+04 3.87E+04 

.OOE+00 1.15E+04 4.98E+04 

.OOE+00 O.OOE+OO 1.66E+04 

.OOE+00 O.OOE+OO 1.66E+04 

.41E+03 O.OOE+OO 2.77E+04 

.OOE+00 5.76E+03 l.llE+04 

.OOE+00 O.OOE+OO 2.21E+04 

.OOE+00 O.OOE+OO 1.66E+04 

.OOE+00 O.OOE+OO O.OOE+OO 

.OOE+00 O.OOE+OO l.llE+04 

.OOE+00 O.OOE+OO O.OOE+OO 

.OOE+00 O.OOE+OO O.OOE+OO 

.OOE+00 O.OOE+OO O.OOE+OO 

.OOE+OO O.OOE+OO O.OOE+OO 

.OOE+OO O.OOE+OO O.OOE+OO 

.OOE+OO O.OOE+OO O.OOE+OO 

.OOE+OO O.OOE+OO O.OOE+OO 

.OOE+OO O.OOE+OO O.OOE+OO 

.OOE+OO O.OOE+OO O.OOE+OO 

5 
6 
7 
9 
6 
7 
3 
2 
9 
7 
1 
0 
0 
0 
6 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
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15 min 20 min 
15 20 

dla. 

0.87 1.64E+05 9.66E+04 
1.04 1.40E+05 1.21E+05 
1.24 2.19E+05 1.50E+05 
1.48 2.37E+05 1.74E+05 
1.77 1.95E+05 1.50E+05 
2.11 2.01E+05 l.OlE+05 
2.51 1.70E+05 l.llE+05 
3.00 1.28E+05 8.21E+04 
3.58 4.87E+04 3.86E+04 
4.27 6.69E+04 9.66E+03 
5.10 3.65E+04 9.66E+03 
6.08 3.04E+04 O.OOE+OO 
7.26 6.08E+03 1.45E+04 
8.66 6.08E+03 O.OOE+OO 
10.33 6.08E+03 9.66E+03 
12.33 1.22E+04 4.83E+03 
14.71 1.22E+04 4.83E+03 
17.55 3.04E+04 4.83E+03 
20.94 O.OOE+OO 4.83E+03 
24.98 O.OOE+OO O.OOE+OO 
29.81 O.OOE+OO O.OOE+OO 
35.56 O.OOE+OO O.OOE+OO 
42.43 6.08E+03 4.83E+03 
50.63 O.OOE+OO 4.83E+03 
60.41 O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO 
86.00 O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO 

25 min 30 min 45 min 
25 30 45 

9.43E+04 7.17E+04 6.17E+04 
9.43E+04 5.30E+04 6.76E+04 
1.17E+05 5.92E+04 5.29E+04 
1.08E+05 7.17E+04 5.29E+04 
7.18E+04 4.36E+04 4.99E+04 
6.28E+04 3.43E+04 5.29E+04 
4.04E+04 1.56E+04 2.Ô4E+04 
3.59E+04 2.18E+04 2.64E+04 
1.80E+04 3.12E+03 1.18E+04 
2.24E+04 6.24E+03 O.OOE+OO 
4.49E+03 O.OOE+OO O.OOE+OO 
4.49E+03 3.12E+03 5.88E+03 
4.49E+03 O.OOE+OO 2.94E+03 
4.49E+03 O.OOE+OO O.OOE+OO 
O.OOE+OO 3.12E+03 O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO 3.12E+03 O.OOE+OO 
4.49E+03 O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO 3.12E+03 O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO 3.12E+03 O.OOE+OO 
4.49E+03 O.OOE+OO 2.94E+03 
O.OOE+OO O.OOE+OO 2.94E+03 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
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09/23/88 
Time > 

homog 0 min 3 min 5 min 10 min 
-1 0 3 5 10 

dla. 

0.87 8.67E+05 7.30E+05 6.93E+05 5.24E+05 1.72E+05 
1.04 6.50E+05 6.45E+05 4.23E+05 3.63E+05 1.72E+05 
1.24 9.39E+05 6.84E+05 6.41E+05 4.72E+05 1.94E+05 
1.48 1.08E+06 9.84E+05 6.48E+05 5.99E+05 2.52E+05 
1.77 8.34E+05 5.67E+05 6.03E+05 5.65E+05 1.59E+05 
2.11 5.78E+05 5.47E+05 4.62E+05 5.59E+05 1.90E+05 
2.51 2.69E+05 3.26E+05 2.502+05 3.57E+05 1.59E+05 
3.00 1.25E+05 1.37E+05 1.41E+05 2.25E+05 8.83E+04 
3.58 5.91E+04 4.56E+04 7.70E+04 1.09E+05 8.83E+04 
4.27 4.60E+04 1.96E+04 2.57E+04 5.18E+04 7.50E+04 
5.10 1.31E+04 O.OOE+OO 1.92E+04 4.61E+04 3.09E+04 
6.08 O.OOE+OO 6.52E+03 6.41E+03 3.46E+04 5.30E+04 
7.26 6.57E+03 O.OOE+OO O.OOE+OO 1.73E+04 3.97E+04 
8.66 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 3.97E+04 
10.33 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 1.32E+04 
12.33 O.OOE+OO O.OOE+OO O.OOE+OO 5.76E+03 4.41E+03 
14.71 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 1.32E+04 
17.55 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 4.41E+03 
20.94 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
24.98 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
29.81 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
35.56 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
42.43 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
50.63 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
86.00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 
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15 min 20 min 
15 20 

dla. 

0.87 1.41E+05 7.73E+04 
1.04 1.31E+05 1.35E+05 
1.24 1.99E+05 7.24E+04 
1.48 1.60E+05 1.35E+05 
1,77 1.36E+05 9.18E+04 
2.11 1.21E+05 7.24E+04 
2.51 9.22E+04 4.83E+04 
3.00 6.31E+04 2.90E+04 
3.58 5.82E+04 1.93E+04 
4.27 2.91E+04 1.93E+04 
5.10 4.85E+03 1.45E+04 
6.08 4.85E+03 1.45E+04 
7.26 9.70E+03 O.OOE+00 
8.66 1.46E+04 9.66E+03 
10.33 O.OOE+00 O.OOE+00 
12.33 9.70E+03 O.OOE+00 
14.71 O.OOE+00 O.OOE+00 
17.55 O.OOE+00 4.83E+03 
20.94 4.85E+03 4.83E+03 
24.98 O.OOE+00 O.OOE+00 
29.81 9.70E+03 O.OOE+00 
35.56 O.OOE+00 O.OOE+00 
42.43 O.OOE+00 4.83E+03 
50.63 O.OOE+OO O.OOE+OO 
60.41 O.OOE+OO O.OOE+OO 
72.08 O.OOE+OO O.OOE+OO 
86.00 O.OOE+OO O.OOE+OO 
102.62 O.OOE+OO O.OOE+OO 
122.44 O.OOE+OO O.OOE+OO 

25 min 30 min 45 min 
25 30 45 

8.98E+04 5.56E+04 7.64E+04 
6.36E+04 8.18E+04 4.41E+04 
9.73E+04 6.87E+04 9.11E+04 
9.73E+04 7.85E+04 6.76E+04 
8.98E+04 8.18E+04 7.35E+04 
7.49E+04 5.23E+04 3.82E+04 
3.74E+04 3.27E+04 3.53E+04 
2.25E+04 2.29E+04 5.88E+03 
2.25E+04 1.31E+04 2.94E+03 
1.12E+04 6.54E+03 O.OOE+OO 
3.74E+03 3.27E+03 O.OOE+OO 
7.49E+03 6.54E+03 O.OOE+OO 
7.49E+03 O.OOE+OO O.OOE+OO 
O.OOE+OO 3.27E+03 O.OOE+OO 
3.74E+03 O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
3.74E+03 O.OOE+OO 2.94E+03 
O.OOE+OO O.OOE+OO O.OOE+OO 
3.74E+03 O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO 2.94E+03 
O.OOE+OO O.OOE+OO 5.88E+03 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO 2.94E+03 
O.OOE+OO 3.27E+03 O.OOE+OO 
3.74E+03 3.27E+03 O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 
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